2 resultados para pyrrhotite
em Universidad Politécnica de Madrid
Resumo:
As a result of the variscan collision, several allochtonous complexes were emplaced on the Iberian margin in Devonian times, among them the Cabo Ortegal Complex comprising the Moeche ophiolitic sequence. Copper has been won from several mines (Piquitos I & II, Barqueira, Maruxa) from disseminated ores and thin massive sulphide layers in the Moeche Unit, a strongly deformed meta-volcanic sequence comprising mainly quartz-chlorite schists and mylonites, which defines the top of the ophiolite. The ores were metamorphosed and strongly deformed under brittle conditions (for pyrite), but their textures are often apparently post-deformational, due to very common solution-transfer processes; they are composed mostly of pyrite and chalcopyrite, with minor sphalerite, pyrrhotite, etc., and with traces of native gold and PGE. The geology, mineralogy, and geochemistry of the orebodies relate closely to VMS of the Cu-Zn (Cyprus) type. Fluid inclusion studies allowed an estimation of metamorphic conditions at pressures of 2/2’5 kb and T 325/350ºC. New determinations using the chlorite geothermometer yield temperatures around 320 ºC, corresponding to pressures near 2 kb according to the isochores deduced from the fluid inclusion study, although in the Barqueira mine higher temperatures, up to 350 ºC, are found, corresponding to presssures up to 2’5 kb. Pb isotopic compositions of pyrite point to a double source of Pb, i.e. a main mantle and a subordinate crustal source. The values for 87SR/86Sr in pyrite support this interpretation, but some results suggest later mobilization in an open system, corresponding to solution-transfer. Age determinations of pyrite deduced from the Pb isotope uranogenic graph, ≈ 480 Ma, do not fit with the metamorphic ages published for the Moeche Unit, and might point to the age of Pb extraction from the mantle.
Resumo:
Recent research has discovered high-grade Au ores in NNE-SSW trending shear zones in metamorphic proterozoic and palaeozoic terranes, some 40 km NW of Santiago de Compostela (NW Spain). The orebodies are bound to late-stage Hercynian structures, mainly due to brittle deformation, which are superimposed on earlier ductile shear zones, cutting through various catazonal lithologies, including ortho- and paragneisses, amphibolites, eclogites, and granites. Ore mineralogy, alteration, and ore textures define a frame whose main features are common to all prospects in the area. Main minerals are arsenopyrite and pyrite - accompanied by quartz, adularia, sericite, + (tourmaline, chlorite, carbonates, graphite), as main gangue minerals - with subordinate amounts of boulangerite, bismuthinite, kobellite, jamesonite, chalcopyrite, marcasite, galena, sphalerite, rutile, titanite, scheelite, beryl, fluorite, and minor native gold, electrum, native bismuth, fahlore, pyrrhotite, mackinawite, etc., defining a meso-catathermal paragenesis. Detailed microscopic study allows the author to propose a general descriptive scheme of textural classification for this type of ore. Most of the ores fill open spaces or veins, seal cracks or cement breccias; disseminated ores with replacement features related to alteration (mainly silicification, sericitization, and adularization) are also observed. Intensive and repeated cataclasis is a common feature of many ores, suggesting successive events of brittle deformation, hydrothermal flow, and ore precipitation. Gold may be transported and accumulated in any of these events, but tends to be concentrated in later ones. The origin of the gold ores is explained in terms of hydrotherreal discharge, associated with mainly brittle deformation and possibly related to granitic magmas, in the global tectonic frame of crustal evolution of West Galicia. The mineralogical and textural study suggests some criteria which will be of practical value for exploration and for ore processing. Ore grades can be improved by flotation of arsenopyrite. Non-conventional methods, such as pressure or bacterial leaching, may subsequently obtain a residue enriched in gold.