5 resultados para pupils with rare diseases
em Universidad Politécnica de Madrid
Resumo:
HealthEye es la red social para unir a personas con la misma enfermedad rara. Este proyecto, es considerado como una startup social, abordando tanto el desarrollo de la plataforma así como el modelo de negocio del proyecto. La parte más complicada del proyecto, sin duda alguna, es encontrar un modelo sostenible para la empresa, y por supuesto, el crear una web de buena calidad para el beneficio del usuario.
Resumo:
Los patógenos han desarrollado estrategias para sobrevivir en su entorno, infectar a sus huéspedes, multiplicarse dentro de estos y posteriormente transmitirse a otros huéspedes. Todos estos componentes hacen parte de la eficacia biológica de los patógenos, y les permiten ser los causantes de enfermedades infecciosas tanto en hombres y animales, como en plantas. El proceso de infección produce efectos negativos en la eficacia biológica del huésped y la gravedad de los efectos, dependerá de la virulencia del patógeno. Por su parte, el huésped ha desarrollado mecanismos de respuesta en contra del patógeno, tales como la resistencia, por la que reduce la multiplicación del patógeno, o la tolerancia, por la que disminuye el efecto negativo de la infección. Estas respuestas del huésped a la infección producen efectos negativos en la eficacia biológica del patógeno, actuando como una presión selectiva sobre su población. Si la presión selectiva sobre el patógeno varía según el huésped, se predice que un mismo patógeno no podrá aumentar su eficacia biológica en distintos huéspedes y estará más adaptado a un huésped y menos a otro, disminuyendo su gama de huéspedes. Esto supone que la adaptación de un patógeno a distintos huéspedes estará a menudo dificultada por compromisos (trade-off) en diferentes componentes de la eficacia biológica del patógeno. Hasta el momento, la evidencia de compromisos de la adaptación del patógeno a distintos huéspedes no es muy abundante, en lo que se respecta a los virus de plantas. En las últimas décadas, se ha descrito un aumento en la incidencia de virus nuevos o previamente descritos que producen enfermedades infecciosas con mayor gravedad y/o diferente patogenicidad, como la infección de huéspedes previamente resistentes. Esto se conoce como la emergencia de enfermedades infecciosas y está causada por patógenos emergentes, que proceden de un huésped reservorio donde se encuentran adaptados. Los huéspedes que actúan como reservorios pueden ser plantas silvestres, que a menudo presentan pocos síntomas o muy leves a pesar de estar infectados con diferentes virus, y asimismo se encuentran en ecosistemas con ninguna o poca intervención humana. El estudio de los factores ecológicos y biológicos que actúan en el proceso de la emergencia de enfermedades infecciosas, ayudará a entender sus causas para crear estrategias de prevención y control. Los virus son los principales patógenos causales de la emergencia de enfermedades infecciosas en humanos, animales y plantas y un buen modelo para entender los procesos de la emergencia. Asimismo, las plantas a diferencia de los animales, son huéspedes fáciles de manipular y los virus que las afectan, más seguros para el trabajo en laboratorio que los virus de humanos y animales, otros modelos también usados en la investigación. Por lo tanto, la interacción virus – planta es un buen modelo experimental para el estudio de la emergencia de enfermedades infecciosas. El estudio de la emergencia de virus en plantas tiene también un interés particular, debido a que los virus pueden ocasionar pérdidas económicas en los cultivos agrícolas y poner en riesgo la durabilidad de la resistencia de plantas mejoradas, lo que supone un riesgo en la seguridad alimentaria con impactos importantes en la sociedad, comparables con las enfermedades infecciosas de humanos y animales domésticos. Para que un virus se convierta en un patógeno emergente debe primero saltar desde su huésped reservorio a un nuevo huésped, segundo adaptarse al nuevo huésped hasta que la infección dentro de la población de éste se vuelva independiente del reservorio y finalmente debe cambiar su epidemiología. En este estudio, se escogió la emergencia del virus del mosaico del pepino dulce (PepMV) en el tomate, como modelo experimental para estudiar la emergencia de un virus en una nueva especie de huésped, así como las infecciones de distintos genotipos del virus del moteado atenuado del pimiento (PMMoV) en pimiento, para estudiar la emergencia de un virus que aumenta su patogenicidad en un huésped previamente resistente. El estudio de ambos patosistemas nos permitió ampliar el conocimiento sobre los factores ecológicos y evolutivos en las dos primeras fases de la emergencia de enfermedades virales en plantas. El PepMV es un patógeno emergente en cultivos de tomate (Solanum lycopersicum) a nivel mundial, que se describió primero en 1980 infectando pepino dulce (Solanum muricatum L.) en Perú, y casi una década después causando una epidemia en cultivos de tomate en Holanda. La introducción a Europa posiblemente fue a través de semillas infectadas de tomate procedentes de Perú, y desde entonces se han descrito nuevos aislados que se agrupan en cuatro cepas (EU, LP, CH2, US1) que infectan a tomate. Sin embargo, el proceso de su emergencia desde pepino dulce hasta tomate es un interrogante de gran interés, porque es uno de los virus emergentes más recientes y de gran importancia económica. Para la emergencia de PepMV en tomate, se recolectaron muestras de tomate silvestre procedentes del sur de Perú, se analizó la presencia y diversidad de aislados de PepMV y se caracterizaron tanto biológicamente (gama de huéspedes), como genéticamente (secuencias genomicas). Se han descrito en diferentes regiones del mundo aislados de PMMoV que han adquirido la capacidad de infectar variedades previamente resistentes de pimiento (Capsicum spp), es decir, un típico caso de emergencia de virus que implica la ampliación de su gama de huéspedes y un aumento de patogenicidad. Esto tiene gran interés, ya que compromete el uso de variedades resistentes obtenidas por mejora genética, que es la forma de control de virus más eficaz que existe. Para estudiar la emergencia de genotipos altamente patogénicos de PMMoV, se analizaron clones biológicos de PMMoV procedentes de aislados de campo cuya patogenicidad era conocida (P1,2) y por mutagénesis se les aumentó la patogenicidad (P1,2,3 y P1,2,3,4), introduciendo las mutaciones descritas como responsables de estos fenotipos. Se analizó si el aumento de la patogenicidad conlleva un compromiso en la eficacia biológica de los genotipos de PMMoV. Para ello se evaluaron diferentes componentes de la eficacia biológica del virus en diferentes huéspedes con distintos alelos de resistencia. Los resultados de esta tesis demuestran: i). El potencial de las plantas silvestres como reservorios de virus emergentes, en este caso tomates silvestres del sur de Perú, así como la existencia en estas plantas de aislados de PepMV de una nueva cepa no descrita que llamamos PES. ii) El aumento de la gama de huéspedes no es una condición estricta para la emergencia de los virus de plantas. iii) La adaptación es el mecanismo más probable en la emergencia de PepMV en tomate cultivado. iv) El aumento de la patogenicidad tiene un efecto pleiotrópico en distintos componentes de la eficacia biológica, así mismo el signo y magnitud de este efecto dependerá del genotipo del virus, del huésped y de la interacción de estos factores. ABSTRACT host Pathogens have evolved strategies to survive in their environment, infecting their hosts, multiplying inside them and being transmitted to other hosts. All of these components form part of the pathogen fitness, and allow them to be the cause of infectious diseases in humans, animals, and plants. The infection process produces negative effects on the host fitness and the effects severity will depend on the pathogen virulence. On the other hand, hosts have developed response mechanisms against pathogens such as resistance, which reduces the growth of pathogens, or tolerance, which decreases the negative effects of infection. T he se responses of s to infection cause negative effects on the pathogen fitness, acting as a selective pressure on its population. If the selective pressures on pathogens va ry according to the host s , probably one pathogen cannot increase its fitness in different hosts and will be more adapted to one host and less to another, decreasing its host range. This means that the adaptation of one pathogen to different hosts , will be often limited by different trade - off components of biological effectiveness of pathogen. Nowadays , trade - off evidence of pathogen adaptation to different hosts is not extensive, in relation with plant viruses. In last decades, an increase in the incidence of new or previously detected viruses has been described, causing infectious diseases with increased severity and/or different pathogenicity, such as the hosts infection previously resistants. This is known as the emergence of infectious diseases and is caused by emerging pathogens that come from a reservoir host where they are adapted. The hosts which act as reservoirs can be wild plants, that often have few symptoms or very mild , despite of being infected with different viruses, and being found in ecosystems with little or any human intervention. The study of ecological and biological factors , acting in the process of the infectious diseases emergence will help to understand its causes to create strategies for its prevention and control. Viruses are the main causative pathogens of the infectious diseases emergence in humans, animals and plants, and a good model to understand the emergency processes. Likewise, plants in contrast to animals are easy host to handle and viruses that affect them, safer for laboratory work than viruses of humans and animals, another models used in research. Therefore, the interaction plant-virus is a good experimental model for the study of the infectious diseases emergence. The study of virus emergence in plants also has a particular interest, because the viruses can cause economic losses in agricultural crops and threaten the resistance durability of improved plants, it suppose a risk for food security with significant impacts on society, comparable with infectious diseases of humans and domestic animals. To become an emerging pathogen, a virus must jump first from its reservoir host to a new host, then adapt to a new host until the infection within the population becomes independent from the reservoir, and finally must change its epidemiology. In this study, the emergence of pepino mosaic virus (PepMV) in tomato, was selected as experimental model to study the emergence of a virus in a new host specie, as well as the infections of different genotypes of pepper mild mottle virus (PMMoV) in pepper, to study the emergence of a virus that increases its pathogenicity in a previously resistant host. The study of both Pathosystems increased our knowledge about the ecological and evolutionary factors in the two first phases of the emergence of viral diseases in plants. The PepMV is an emerging pathogen in tomato (Solanum lycopersicum L.) in the world, which was first described in 1980 by infecting pepino (Solanum muricatum L.) in Peru, and almost after a decade caused an epidemic in tomato crops in Netherlands. The introduction to Europe was possibly through infected tomato seeds from Peru, and from then have been described new isolates that are grouped in four strains (EU, LP, CH2, US1) that infect tomato. However, the process of its emergence from pepino up tomato is a very interesting question, because it is one of the newest emerging viruses and economically important. For the PepMV emergence in tomato, wild tomato samples from southern Peru were collected, and the presence and diversity of PepMV isolates were analyzed and characterized at biological (host range) and genetics (genomic sequences) levels. Isolates from PMMoV have been described in different world regions which have acquired the ability to infect pepper varieties that were previously resistants (Capsicum spp), it means, a typical case of virus emergence which involves the host range extension and an increased pathogenicity. This is of great interest due to involve the use of resistant varieties obtained by breeding, which is the most effective way to control virus. To study the emergence of highly pathogenic genotypes of PMMoV, biological clones from field isolates whose pathogenicity was known were analyzed (P1,2) and by mutagenesis we increased its pathogenicity (P1,2,3 and P1,2, 3,4), introducing the mutations described as responsible for these phenotypes. We analyzed whether the increased pathogenicity involves a trade-off in fitness of PMMoV genotypes. For this aim, different components of virus fitness in different hosts with several resistance alleles were evaluated. The results of this thesis show: i). The potential of wild plants as reservoirs of emerging viruses, in this case wild tomatoes in southern Peru, and the existence in these plants of PepMV isolates of a new undescribed strain that we call PES. ii) The host range expansion is not a strict condition for the plant virus emergence. iii) The adaptation is the most likely mechanism in the PepMV emergence in cultivated tomato. iv) The increased pathogenicity has a pleiotropic effect on several fitness components, besides the sign and magnitude of this effect depends on the virus genotype, the host and the interaction of both.
Resumo:
This paper discusses the torsional response of a scaled reinforced concrete frame structure subjected to several uniaxial shaking table tests. The tested structure is nominally symmetric in the direction of shaking and exhibits torsion attributable to non-uniform yielding of structural components and uncertainties in the building process. Asymmetric behavior is analyzed in terms of displacement, strain in reinforcing bars, energy dissipated at plastic hinges, and damage at section and frame levels. The results show that for low levels of seismic hazard, for which the structure is expected to perform basically within the elastic range, the accidental eccentricity is not a concern for the health of the structure, but it significantly increases the lateral displacement demand in the frames (about 30%) and this might cause significant damage to non-structural components. For high levels of seismic hazard the effects of accidental torsion become less important. These results underline the need to consider accidental eccentricity in evaluating the performance of a structure for very frequent or frequent earthquakes, and suggest that consideration of torsion may be neglected for performance levels associated with rare or very rare earthquakes.
Resumo:
Light confinement strategies play a crucial role in the performance of thin-film (TF) silicon solar cells. One way to reduce the optical losses is the texturing of the transparent conductive oxide (TCO) that acts as the front contact. Other losses arise from the mismatch between the incident light spectrum and the spectral properties of the absorbent material that imply that low energy photons (below the bandgap value) are not absorbed, and therefore can not generate photocurrent. Up-conversion techniques, in which two sub-bandgap photons are combined to give one photon with a better matching with the bandgap, were proposed to overcome this problem. In particular, this work studies two strategies to improve light management in thin film silicon solar cells using laser technology. The first one addresses the problem of TCO surface texturing using fully commercial fast and ultrafast solid state laser sources. Aluminum doped Zinc Oxide (AZO) samples were laser processed and the results were optically evaluated by measuring the haze factor of the treated samples. As a second strategy, laser annealing experiments of TCOs doped with rare earth ions are presented as a potential process to produce layers with up-conversion properties, opening the possibility of its potential use in high efficiency solar cells.
Resumo:
A menudo los científicos secuencian el ADN de un gran número de personas con el objetivo de determinar qué genes se asocian con determinadas enfermedades. Esto permite meóon del genoma humano. El precio de un perfil genómico completo se ha posicionado por debajo de los 200 dólares y este servicio lo ofrecen muchas compañías, la mayor parte localizadas en EEUU. Como consecuencia, en unos pocos a~nos la mayoría de las personas procedentes de los países desarrollados tendrán los medios para tener su ADN secuenciado. Alrededor del 0.5% del ADN de cada persona (que corresponde a varios millones de nucleótidos) es diferente del genoma de referencia debido a variaciones genéticas. Así que el genoma contiene información altamente sensible y personal y representa la identidad biológica óon sobre el entorno o estilo de vida de uno (a menudo facilmente obtenible de las redes sociales), sería posible inferir el fenotipo del individuo. Multiples GWAS (Genome Wide Association Studies) realizados en los últimos a~nos muestran que la susceptibilidad de un paciente a tener una enfermedad en particular, como el Alzheimer, cáncer o esquizofrenia, puede ser predicha parcialmente a partir de conjuntos de sus SNP (Single Nucleotide Polimorphism). Estos resultados pueden ser usados para medicina genómica personalizada (facilitando los tratamientos preventivos y diagnósticos), tests de paternidad genéticos y tests de compatibilidad genética para averiguar a qué enfermedades pueden ser susceptibles los descendientes. Estos son algunos de los beneficios que podemos obtener usando la información genética, pero si esta información no es protegida puede ser usada para investigaciones criminales y por compañías aseguradoras. Este hecho podría llevar a discriminaci ón genética. Por lo que podemos concluir que la privacidad genómica es fundamental por el hecho de que contiene información sobre nuestra herencia étnica, nuestra predisposición a múltiples condiciones físicas y mentales, al igual que otras características fenotópicas, ancestros, hermanos y progenitores, pues los genomas de cualquier par de individuos relacionados son idénticos al 99.9%, contrastando con el 99.5% de dos personas aleatorias. La legislación actual no proporciona suficiente información técnica sobre como almacenar y procesar de forma segura los genomas digitalizados, por lo tanto, es necesaria una legislación mas restrictiva ---ABSTRACT---Scientists typically sequence DNA from large numbers of people in order to determine genes associated with particular diseases. This allows to improve the modern healthcare and to provide a better understanding of the human genome. The price of a complete genome profile has plummeted below $200 and this service is ofered by a number of companies, most of them located in the USA. Therefore, in a few years, most individuals in developed countries will have the means of having their genomes sequenced. Around 0.5% of each person's DNA (which corresponds to several millions of nucleotides) is diferent from the reference genome, owing to genetic variations. Thus, the genome contains highly personal and sensitive information, and it represents our ultimate biological identity. By combining genomic data with information about one's environment or lifestyle (often easily obtainable from social networks), could make it possible to infer the individual's phenotype. Multiple Genome Wide Association Studies (GWAS) performed in recent years have shown that a patient's susceptibility to particular diseases, such as Alzheimer's, cancer, or schizophrenia, can be partially predicted from sets of his SNPs. This results can be used for personalized genomic medicine (facilitating preventive treatment and diagnosis), genetic paternity tests, ancestry and genealogical testing, and genetic compatibility tests in order to have knowledge about which deseases would the descendant be susceptible to. These are some of the betefts we can obtain using genoma information, but if this information is not protected it can be used for criminal investigations and insurance purposes. Such issues could lead to genetic discrimination. So we can conclude that genomic privacy is fundamental due to the fact that genome contains information about our ethnic heritage, predisposition to numerous physical and mental health conditions, as well as other phenotypic traits, and ancestors, siblings, and progeny, since genomes of any two closely related individuals are 99.9% identical, in contrast with 99.5%, for two random people. The current legislation does not ofer suficient technical information about safe and secure ways of storing and processing digitized genomes, therefore, there is need for more restrictive legislation.