6 resultados para propagation dynamics

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The derivative nonlinear Schrodinger DNLS equation, describing propagation of circularly polarized Alfven waves of finite amplitude in a cold plasma, is truncated to explore the coherent, weakly nonlinear, cubic coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. In a reduced three-wave model equal dampings of daughter waves, three-dimensional flow for two wave amplitudes and one relative phase, no matter how small the growth rate of the unstable wave there exists a parametric domain with the flow exhibiting chaotic relaxation oscillations that are absent for zero growth rate. This hard transition in phase-space behavior occurs for left-hand LH polarized waves, paralleling the known fact that only LH time-harmonic solutions of the DNLS equation are modulationally unstable, with damping less than about unstable wave frequency 2/4 x ion cyclotron frequency. The structural stability of the transition was explored by going into a fully 3-wave model different dampings of daughter waves,four-dimensional flow; both models differ in significant phase-space features but keep common features essential for the transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The derivative nonlinear Schrödinger (DNLS) equation, describing propagation of circularly polarized Alfven waves of finite amplitude in a cold plasma, is truncated to explore the coherent, weakly nonlinear, cubic coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. In a reduced three-wave model (equal damping of daughter waves, three-dimensional flow for two wave amplitudes and one relative phase), no matter how small the growth rate of the unstable wave there exists a parametric domain with the flow exhibiting chaotic dynamics that is absent for zero growth-rate. This hard transition in phase-space behavior occurs for left-hand (LH) polarized waves, paralelling the known fact that only LH time-harmonic solutions of the DNLS equation are modulationally unstable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The derivative nonlinear Schrödinger (DNLS) equation, describing propagation of circularly polarized Alfven waves of finite amplitude in a cold plasma, is truncated to explore the coherent, weakly nonlinear coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. No matter how small the growth rate of the unstable wave, the four-dimensional flow for the three wave amplitudes and a relative phase, with both resistive damping and linear Landau damping, exhibits chaotic relaxation oscillations that are absent for zero growth-rate. This hard transition in phase-space behavior occurs for left-hand (LH) polarized waves, paralleling the known fact that only LH time-harmonic solutions of the DNLS equation are modulationally unstable. The parameter domain developing chaos is much broader than the corresponding domain in a reduced 3-wave model that assumes equal dampings of the daughter waves

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper some aspects of the use of non-reflecting boundaries in dynamic problems, analyzed in time domain, are considered. Current trends for treating the above mentioned problems are summarized with a particular emphasis on the use of numerical techniques, such as Boundary Element Method (BEM) or mixed and hybrid formulations, Finite Element Method (FEM) plus BEM. As an alternative to these methods, an easy time domain boundary condition, obtained from the well known consistent transmitting boundary developed by Waas for frequency domain analysis, can be applied to represent the reactions of the unbounded soil on the interest zone. The behaviour of this proposed boundary condition is studied when waves of different frequency to the one used for its obtention are acting on the physical edge of the model. As an application example,an analysis is made of the soil-structure interaction of a rigid strip foundation on a horizontal non-linear elastic layer on bed rock. The results obtained suggest the need of time domain solutions for this type of problem

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivado por los últimos hallazgos realizados gracias a los recientes avances tecnológicos y misiones espaciales, el estudio de los asteroides ha despertado el interés de la comunidad científica. Tal es así que las misiones a asteroides han proliferado en los últimos años (Hayabusa, Dawn, OSIRIX-REx, ARM, AIMS-DART, ...) incentivadas por su enorme interés científico. Los asteroides son constituyentes fundamentales en la evolución del Sistema Solar, son además grandes concentraciones de valiosos recursos naturales, y también pueden considerarse como objectivos estratégicos para la futura exploración espacial. Desde hace tiempo se viene especulando con la posibilidad de capturar objetos próximos a la Tierra (NEOs en su acrónimo anglosajón) y acercarlos a nuestro planeta, permitiendo así un acceso asequible a los mismos para estudiarlos in-situ, explotar sus recursos u otras finalidades. Por otro lado, las asteroides se consideran con frecuencia como posibles peligros de magnitud planetaria, ya que impactos de estos objetos con la Tierra suceden constantemente, y un asteroide suficientemente grande podría desencadenar eventos catastróficos. Pese a la gravedad de tales acontecimientos, lo cierto es que son ciertamente difíciles de predecir. De hecho, los ricos aspectos dinámicos de los asteroides, su modelado complejo y las incertidumbres observaciones hacen que predecir su posición futura con la precisión necesaria sea todo un reto. Este hecho se hace más relevante cuando los asteroides sufren encuentros próximos con la Tierra, y más aún cuando estos son recurrentes. En tales situaciones en las cuales fuera necesario tomar medidas para mitigar este tipo de riesgos, saber estimar con precisión sus trayectorias y probabilidades de colisión es de una importancia vital. Por ello, se necesitan herramientas avanzadas para modelar su dinámica y predecir sus órbitas con precisión, y son también necesarios nuevos conceptos tecnológicos para manipular sus órbitas llegado el caso. El objetivo de esta Tesis es proporcionar nuevos métodos, técnicas y soluciones para abordar estos retos. Las contribuciones de esta Tesis se engloban en dos áreas: una dedicada a la propagación numérica de asteroides, y otra a conceptos de deflexión y captura de asteroides. Por lo tanto, la primera parte de este documento presenta novedosos avances de apliación a la propagación dinámica de alta precisión de NEOs empleando métodos de regularización y perturbaciones, con especial énfasis en el método DROMO, mientras que la segunda parte expone ideas innovadoras para la captura de asteroides y comenta el uso del “ion beam shepherd” (IBS) como tecnología para deflectarlos. Abstract Driven by the latest discoveries enabled by recent technological advances and space missions, the study of asteroids has awakened the interest of the scientific community. In fact, asteroid missions have become very popular in the recent years (Hayabusa, Dawn, OSIRIX-REx, ARM, AIMS-DART, ...) motivated by their outstanding scientific interest. Asteroids are fundamental constituents in the evolution of the Solar System, can be seen as vast concentrations of valuable natural resources, and are also considered as strategic targets for the future of space exploration. For long it has been hypothesized with the possibility of capturing small near-Earth asteroids and delivering them to the vicinity of the Earth in order to allow an affordable access to them for in-situ science, resource utilization and other purposes. On the other side of the balance, asteroids are often seen as potential planetary hazards, since impacts with the Earth happen all the time, and eventually an asteroid large enough could trigger catastrophic events. In spite of the severity of such occurrences, they are also utterly hard to predict. In fact, the rich dynamical aspects of asteroids, their complex modeling and observational uncertainties make exceptionally challenging to predict their future position accurately enough. This becomes particularly relevant when asteroids exhibit close encounters with the Earth, and more so when these happen recurrently. In such situations, where mitigation measures may need to be taken, it is of paramount importance to be able to accurately estimate their trajectories and collision probabilities. As a consequence, advanced tools are needed to model their dynamics and accurately predict their orbits, as well as new technological concepts to manipulate their orbits if necessary. The goal of this Thesis is to provide new methods, techniques and solutions to address these challenges. The contributions of this Thesis fall into two areas: one devoted to the numerical propagation of asteroids, and another to asteroid deflection and capture concepts. Hence, the first part of the dissertation presents novel advances applicable to the high accuracy dynamical propagation of near-Earth asteroids using regularization and perturbations techniques, with a special emphasis in the DROMO method, whereas the second part exposes pioneering ideas for asteroid retrieval missions and discusses the use of an “ion beam shepherd” (IBS) for asteroid deflection purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a well-distinguished group of asteroids for which the roto-translational cou-pling is known to have a non-negligible e�ect in the long-term. The study of such asteroids suggests the use of specialized propagation techniques, where perturbation methods make their best. The techniques from which the special regularization method DROMO is derived, have now been extended to the attitude dynamics, with equally remarkable results in terms of speed and accuracy, thus making the combination of these algorithms specially. well-suited to deal with the propagation of bodies with strong attitude coupling.