3 resultados para programação linear multiobjetivo 0-1

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Las propiedades N-autocontradicción y autocontradicción, han sido suficientemente estudiadas en los conjuntos borrosos ordinarios y en los conjuntos borrosos intuicionistas de Atanassov. En el presente artículo se inicia el estudio de las mencionadas propiedades, dentro del marco de los conjuntos borrosos de tipo 2 cuyos grados de pertenencia son funciones normales y convexas (L). En este sentido, aquí se extienden los conceptos de N-autocontradicción y autocontradicción al conjunto L, y se establecen algunos criterios para verificar tales propiedades.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sequential estimation of the success probability p in inverse binomial sampling is considered in this paper. For any estimator pˆ , its quality is measured by the risk associated with normalized loss functions of linear-linear or inverse-linear form. These functions are possibly asymmetric, with arbitrary slope parameters a and b for pˆ

p , respectively. Interest in these functions is motivated by their significance and potential uses, which are briefly discussed. Estimators are given for which the risk has an asymptotic value as p→0, and which guarantee that, for any p∈(0,1), the risk is lower than its asymptotic value. This allows selecting the required number of successes, r, to meet a prescribed quality irrespective of the unknown p. In addition, the proposed estimators are shown to be approximately minimax when a/b does not deviate too much from 1, and asymptotically minimax as r→∞ when a=b.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sequential estimation of the success probability $p$ in inverse binomial sampling is considered in this paper. For any estimator $\hatvap$, its quality is measured by the risk associated with normalized loss functions of linear-linear or inverse-linear form. These functions are possibly asymmetric, with arbitrary slope parameters $a$ and $b$ for $\hatvap < p$ and $\hatvap > p$ respectively. Interest in these functions is motivated by their significance and potential uses, which are briefly discussed. Estimators are given for which the risk has an asymptotic value as $p \rightarrow 0$, and which guarantee that, for any $p \in (0,1)$, the risk is lower than its asymptotic value. This allows selecting the required number of successes, $\nnum$, to meet a prescribed quality irrespective of the unknown $p$. In addition, the proposed estimators are shown to be approximately minimax when $a/b$ does not deviate too much from $1$, and asymptotically minimax as $\nnum \rightarrow \infty$ when $a=b$.