25 resultados para process conditions

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

El objetivo del presente proyecto es identificar y definir la problemática del ruido neutrónico en el tratamiento y procesamiento de los canales de medida y tratamiento del flujo neutrónico interno y externo en los sistemas de control y protección de los reactores nucleares tipo PWR (que trabajan con agua a presión) que dan lugar a actuaciones indeseadas de los sistemas de vigilancia y control no relacionadas con situaciones reales del proceso como cambios significativos en los parámetros de temperatura y por lo tanto de potencia del reactor que reducen la disponibilidad de operación de la central y provocan transitorios no justificados por dichas actuaciones. Finalmente, se proponen algunas soluciones. Abstract The aim of this project is to identify and define the problem of neutron noise in PWR nuclear power plants, its influence on the treatment and processing of the measurement channels and external neutron flux treatment, its contributions to the control and protection systems that result in undesired actions of monitoring and control systems that are not related to the actual process conditions. These actions reduce the availability of plant operation and unjustified transient causes. Finally, some possible solutions are proposed

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are many industries that use highly technological solutions to improve quality in all of their products. The steel industry is one example. Several automatic surface-inspection systems are used in the steel industry to identify various types of defects and to help operators decide whether to accept, reroute, or downgrade the material, subject to the assessment process. This paper focuses on promoting a strategy that considers all defects in an integrated fashion. It does this by managing the uncertainty about the exact position of a defect due to different process conditions by means of Gaussian additive influence functions. The relevance of the approach is in making possible consistency and reliability between surface inspection systems. The results obtained are an increase in confidence in the automatic inspection system and an ability to introduce improved prediction and advanced routing models. The prediction is provided to technical operators to help them in their decision-making process. It shows the increase in improvement gained by reducing the 40 % of coils that are downgraded at the hot strip mill because of specific defects. In addition, this technology facilitates an increase of 50 % in the accuracy of the estimate of defect survival after the cleaning facility in comparison to the former approach. The proposed technology is implemented by means of software-based, multi-agent solutions. It makes possible the independent treatment of information, presentation, quality analysis, and other relevant functions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los polímeros compostables suponen en torno al 30% de los bioplásticos destinados a envasado, siendo a su vez esta aplicación el principal destino de la producción de este tipo de materiales que, en el año 2013, superó 1,6 millones de toneladas. La presente tesis aborda la biodegradación de los residuos de envases domésticos compostables en medio aerobio para dos tipos de formato y materiales, envase rígido de PLA (Clase I) y dos tipos de bolsas de PBAT+PLA (Clases II y III). Sobre esta materia se han realizado diversos estudios en escala de laboratorio pero para otro tipo de envases y biopolímeros y bajo condiciones controladas del compost con alguna proyección particularizada en plantas. La presente tesis da un paso más e investiga el comportamiento real de los envases plásticos compostables en la práctica del compostaje en tecnologías de pila y túnel, tanto a escala piloto como industrial, dentro del procedimiento y con las condiciones ambientales de instalaciones concretas. Para ello, con el método seguido, se han analizado los requisitos básicos que debe cumplir un envase compostable, según la norma UNE – EN 13432, evaluando el porcentaje de biodegradación de los envases objeto de estudio, en función de la pérdida de peso seco tras el proceso de compostaje, y la calidad del compost obtenido, mediante análisis físico-químico y de fitotoxicidad para comprobar que los materiales de estudio no aportan toxicidad. En cuanto a los niveles de biodegrabilidad, los resultados permiten concluir que los envases de Clase I se compostan adecuadamente en ambas tecnologías y que no requieren de unas condiciones de proceso muy exigentes para alcanzar niveles de biodegradación del 100%. En relación a los envases de Clase II, se puede asumir que se trata de un material que se composta adecuadamente en pila y túnel industrial pero que requiere de condiciones exigentes para alcanzar niveles de biodegradación del 100% al afectarle de forma clara la ubicación de las muestras en la masa a compostar, especialmente en el caso de la tecnología de túnel. Mientras el 90% de las muestras alcanza el 100% de biodegradación en pila industrial, tan sólo el 50% lo consigue en la tecnología de túnel a la misma escala. En cuanto a los envases de Clase III, se puede afirmar que es un material que se composta adecuadamente en túnel industrial pero que requiere de condiciones de cierta exigencia para alcanzar niveles de biodegradación del 100% al poderle afectar la ubicación de las muestras en la masa a compostar. El 75% de las muestras ensayadas en túnel a escala industrial alcanzan el 100% de biodegradación y, aunque no se ha ensayado este tipo de envase en la tecnología de pila al no disponer de muestras, cabe pensar que los resultados de biodegrabilidad que hubiera podido alcanzar habrían sido, como mínimo, los obtenidos para los envases de Clase II, al tratarse de materiales muy similares en composición. Por último, se concluye que la tecnología de pila es más adecuada para conseguir niveles de biodegradación superiores en los envases tipo bolsa de PBAT+PLA. Los resultados obtenidos permiten también sacar en conclusión que, en el diseño de instalaciones de compostaje para el tratamiento de la fracción orgánica recogida selectivamente, sería conveniente realizar una recirculación del rechazo del afino del material compostado para aumentar la probabilidad de someter este tipo de materiales a las condiciones ambientales adecuadas. Si además se realiza un triturado del residuo a la entrada del proceso, también se aumentaría la superficie específica a entrar en contacto con la masa de materia orgánica y por tanto se favorecerían las condiciones de biodegradación. En cuanto a la calidad del compost obtenido en los ensayos, los resultados de los análisis físico – químicos y de fitotoxicidad revelan que los niveles de concentración de microorganismo patógenos y de metales pesados superan, en la práctica totalidad de las muestras, los niveles máximos permitidos en la legislación vigente aplicable a productos fertilizantes elaborados con residuos. Mediante el análisis de la composición de los envases ensayados se constata que la causa de esta contaminación reside en la materia orgánica utilizada para compostar en los ensayos, procedente del residuo de origen doméstico de la denominada “fracción resto”. Esta conclusión confirma la necesidad de realizar una recogida selectiva de la fracción orgánica en origen, existiendo estudios que evidencian la mejora de la calidad del residuo recogido en la denominada “fracción orgánica recogida selectivamente” (FORM). Compostable polymers are approximately 30% of bioplastics used for packaging, being this application, at same time, the main destination for the production of such materials exceeded 1.6 million tonnes in 2013. This thesis deals with the biodegradation of household packaging waste compostable in aerobic medium for two format types and materials, rigid container made of PLA (Class I) and two types of bags made of PBAT + PLA (Classes II and III). There are several studies developed about this issue at laboratory scale but for other kinds of packaging and biopolymers and under composting controlled conditions with some specifically plants projection. This thesis goes one step further and researches the real behaviour of compostable plastic packaging in the composting practice in pile and tunnel technologies, both at pilot and industrial scale, within the procedure and environmental conditions of concrete devices. Therefore, with a followed method, basic requirements fulfilment for compostable packaging have been analysed according to UNE-EN 13432 standard. It has been assessed the biodegradability percentage of the packaging studied, based on loss dry weight after the composting process, and the quality of the compost obtained, based on physical-chemical analysis to check no toxicity provided by the studied materials. Regarding biodegradability levels, results allow to conclude that Class I packaging are composted properly in both technologies and do not require high exigent process conditions for achieving 100% biodegradability levels. Related to Class II packaging, it can be assumed that it is a material that composts properly in pile and tunnel at industrial scale but requires exigent conditions for achieving 100% biodegradability levels for being clearly affected by sample location in the composting mass, especially in tunnel technology case. While 90% of the samples reach 100% of biodegradation in pile at industrial scale, only 50% achieve it in tunnel technology at the same scale. Regarding Class III packaging, it can be said that it is a material properly composted in tunnel at industrial scale but requires certain exigent conditions for reaching 100% biodegradation levels for being possibly affected by sample location in the composting mass. The 75% of the samples tested in tunnel at industrial scale reaches 100% biodegradation. Although this kind of packaging has not been tested on pile technology due to unavailability of samples, it is judged that biodegradability results that could be reached would have been, at least, the same obtained for Class II packaging, as they are very similar materials in composition. Finally, it is concluded that pile technology is more suitable for achieving highest biodegradation levels in bag packaging type of PBAT+PLA. Additionally, the obtained results conclude that, in the designing of composting devices for treatment of organic fraction selectively collected, it would be recommended a recirculation of the refining refuse of composted material in order to increase the probability of such materials to expose to proper environmental conditions. If the waste is grinded before entering the process, the specific surface in contact with organic material would also be increased and therefore biodegradation conditions would be more favourable. Regarding quality of the compost obtained in the tests, physical-chemical and phytotoxicity analysis results reveal that pathogen microorganism and heavy metals concentrations exceed, in most of the samples, the maximum allowed levels by current legislation for fertilizers obtained from wastes. Composition analysis of tested packaging verifies that the reason for this contamination is the organic material used for composting tests, comes from the household waste called “rest fraction”. This conclusion confirms the need of a selective collection of organic fraction in the origin, as existing studies show the quality improvement of the waste collected in the so-called “organic fraction selectively collected” (FORM).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The phosphosilicate glass (PSG), fabricated by tube furnace diffusion using a POCl3 source, is widely used as a dopant source in the manufacturing of crystalline silicon solar cells. Although it has been a widely addressed research topic for a long time, there is still lack of a comprehensive understanding of aspects such as the growth, the chemical composition, possible phosphorus depletion, the resulting in-diffused phosphorus profiles, the gettering behavior in silicon, and finally the metal-contact formation. This paper addresses these different aspects simultaneously to further optimize process conditions for photovoltaic applications. To do so, a wide range of experimental data is used and combined with device and process simulations, leading to a more comprehensive interpretation. The results show that slight changes in the PSG process conditions can produce high-quality emitters. It is predicted that PSG processes at 860 °C for 60 min in combination with an etch-back and laser doping from PSG layer results in high-quality emitters with a peak dopant density Npeak = 8.0 × 1018 cm−3 and a junction depth dj = 0.4 μm, resulting in a sheet resistivityρsh = 380 Ω/sq and a saturation current-density J0 below 10 fA/cm2. With these properties, the POCl3 process can compete with ion implantation or doped oxide approaches.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polysilicon cost impacts significantly on the photovoltaics (PV) cost and on the energy payback time. Nowadays, the besetting production process is the so called Siemens process, polysilicon deposition by chemical vapor deposition (CVD) from Trichlorosilane. Polysilicon purification level for PV is to a certain extent less demanding that for microelectronics. At the Instituto de Energía Solar (IES) research on this subject is performed through a Siemens process-type laboratory reactor. Through the laboratory CVD prototype at the IES laboratories, valuable information about the phenomena involved in the polysilicon deposition process and the operating conditions is obtained. Polysilicon deposition by CVD is a complex process due to the big number of parameters involved. A study on the influence of temperature and inlet gas mixture composition on the polysilicon deposition growth rate, based on experimental experience, is shown. Moreover, CVD process accounts for the largest contribution to the energy consumption of the polysilicon production. In addition, radiation phenomenon is the major responsible for low energetic efficiency of the whole process. This work presents a model of radiation heat loss, and the theoretical calculations are confirmed experimentally through a prototype reactor at our disposal, yielding a valuable know-how for energy consumption reduction at industrial Siemens reactors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Usability is the capability of the software product to be understood, learned, used and attractive to the user, when used under specified conditions. Many studies demonstrate the benefits of usability, yet to this day software products continue to exhibit consistently low levels of this quality attribute. Furthermore, poor usability in software systems contributes largely to software failing in actual use. One of the main disciplines involved in usability is that of Human-Computer Interaction (HCI). Over the past two decades the HCI community has proposed specific features that should be present in applications to improve their usability, yet incorporating them into software continues to be far from trivial for software developers. These difficulties are due to multiple factors, including the high level of abstraction at which these HCI recommendations are made and how far removed they are from actual software implementation. In order to bridge this gap, the Software Engineering community has long proposed software design solutions to help developers include usability features into software, however, the problem remains an open research question. This doctoral thesis addresses the problem of helping software developers include specific usability features into their applications by providing them with a structured and tangible guidance in the form of a process, which we have termed the Usability-Oriented Software Development Process. This process is supported by a set of Software Usability Guidelines that help developers to incorporate a set of eleven usability features with high impact on software design. After developing the Usability-oriented Software Development Process and the Software Usability Guidelines, they have been validated across multiple academic projects and proven to help software developers to include such usability features into their software applications. In doing so, their use significantly reduced development time and improved the quality of the resulting designs of these projects. Furthermore, in this work we propose a software tool to automate the application of the proposed process. In sum, this work contributes to the integration of the Software Engineering and HCI disciplines providing a framework that helps software developers to create usable applications in an efficient way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to relate the curing conditions of concrete and the addition of an air-entraining admixture with the damage caused by freeze–thaw cycles. In countries with a continental climate, the curing of concrete in summer is performed under climatic conditions of high temperature and low humidity, and during the winter the concrete suffers conditions of freeze–thaw, often accompanied by the use of de-icing salts. This paper shows the experimental results of the behaviour of concrete specimens cured under climatic summer conditions (high temperature and low humidity) and then subjected to freeze–thaw cycles. Curing of the specimens includes conditions of good and bad practice in relation to wetting and protection of the concrete. It also examines the effectiveness of using an air-entraining admixture in both cases. The experimental programme includes an evaluation of the mechanical properties of the concrete, the study of the cement hydration and the measurement of the volume and pore sizes of the concrete. These tests were performed before and after the application of the freeze–thaw cycles. The results obtained showed that the specimens without air-entraining admixture show a deterioration of mechanical properties after the freeze–thaw test. However, the inclusion of air bubbles benefits the behaviour of concrete against freeze–thaw cycles so even better mechanical properties after the test were observed. This anomalous behaviour is because the cement hydration process continues over the freeze–thaw tests, closing the pore structure. This aspect has been confirmed with the DTA and TG tests performed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regenerated silkworm fibers spun through a wet-spinning process followed by an immersion postspinning drawing step show a work to fracture comparable with that of natural silkworm silk fibers in a wide range of spinning conditions. The mechanical behavior and microstructure of these high performance fibers have been characterized, and compared with those fibers produced through conventional spinning conditions. The comparison reveals that both sets of fibers share a common semicrystalline microstructure, but significant differences are apparent in the amorphous region. Besides, high performance fibers show a ground state and the possibility of tuning their tensile behavior. These properties are characteristic of spider silk and not of natural silkworm silk, despite both regenerated and natural silkworm silk share a common composition different from that of spider silk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adding Zn improves crop growth, increases seed yield and also positively affects nutritional quality. After Zn fertilization, there is normally a period of several years in which residual effects provide an adequate supply of Zn to successive crops. Immediately after the application of Zn sources water-soluble Zn slowly but continually decreases. Various factors, including time and moisture conditions, affect the aging process and modify the solubility of the metal in soil and therefore its availability. In previous experiments, we studied the residual effect of synthetic chelates, obtained that the amounts of potentially available Zn decreased in the second cropping year due to aging processes. The present study was undertaken to verify variations in the residual effects of applying four different synthetic Zn sources

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cost and energy consumption related to obtaining polysilicon impact significantly on the total photovoltaic module cost and its energy payback time. Process simplifications can be performed, leading to cost reductions. Nowadays, among several approaches currently pursued to produce the so called Solar Grade Silicon, the chemical route, named Siemens process, is the dominant one. At the Instituto de Energía Solar research on this topic is focused on the chemical route, in particular on the polysilicon deposition step by chemical vapor deposition (CVD) from Trichlorosilane through a laboratory prototype. Valuable information about the phenomena involved in the polysilicon deposition process and the operating conditions is obtained from our experiments. A particular feature of our system is the inclusion of a mass spectrometer. The present work comprises spectra characterization of the polysilicon deposition chemical reaction, temperature and inlet gas mixture composition influence on the deposition rate and analysis of polysilicon deposition conditions for the ?pop-corn' phenomenon to appear, based on experimental experience (Actas de la Special Issue: E-MRS 2012 Spring Meeting ? Symposium A

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of a CATR relies on the planarity of the synthesized test wave, which is generated within a bounded volume for which specifications are drawn. Millimetre-wave facilities deal with the classical limitations of this frequency band, among which two become critical in our analysis: time-extensive acquisition campaigns and impact of environmental variables. Both features become more evident when increasing the frequency of operation. The variation in atmospheric variables, such as humidity, temperature and pressure has an influence over the performance of all the elements of the facility. The instrumentation behavior is influenced both by the warming up process, and the ambience conditions that surround the equipment. On the changes of the atmosphere itself, they affect the electromagnetic wave propagation, given the physical link between the conditions of the atmosphere and its electric properties as an electromagnetic waves propagation medium

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this article is to focus on the analysis of teaching techniques, ranging from the use of the blackboard and chalk in old traditional classes, using slides and overhead projectors in the eighties and use of presentation software in the nineties, to the video, electronic board and network resources nowadays. Furthermore, all the aforementioned, is viewed under the different mentalities in which the teacher conditions the student using the new teaching technique, improving soft skills but maybe leading either to encouragement or disinterest, and including the lack of educational knowledge consolidation at scientific, technology and specific levels. In the same way, we study the process of adaptation required for teachers, the differences in the processes of information transfer and education towards the student, and even the existence of teachers who are not any longer appealed by their work due which has become much simpler due to new technologies and the greater ease in the development of classes due to the criteria described on the new Grade Programs adopted by the European Higher Education Area. Moreover, it is also intended to understand the evolution of students’ profiles, from the eighties to present time, in order to understand certain attitudes, behaviours, accomplishments and acknowledgements acquired over the semesters within the degree Programs. As an Educational Innovation Group, another key question also arises. What will be the learning techniques in the future?. How these evolving matters will affect both positively and negatively on the mentality, attitude, behaviour, learning, achievement of goals and satisfaction levels of all elements involved in universities’ education? Clearly, this evolution from chalk to the electronic board, the three-dimensional view of our works and their sequence, greatly facilitates the understanding and adaptation later on to the business world, but does not answer to the unknowns regarding the knowledge and the full development of achievement’s indicators in basic skills of a degree. This is the underlying question which steers the roots of the presented research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context: A replication is the repetition of an experiment. Several efforts have been made to adopt replication as a common practice in software engineering. There are different types of replications, depending on their purpose. Similar replications keep the experimental conditions as alike as possible to the original ones. External similar replications, where the replicating experimenters are not the same people as the original experimenters, have been a stumbling block. Several attempts at combining the results of replications have resulted in failure. Software engineering does not appear to be well suited to such replications, because it works with complex experimentally immature contexts. Software engineering settings have a large number of variables, and the role that many of them play is unknown. A successful (or useful) similar replication helps to better understand the phenomenon under study by verifying results and/or identifying contextual variables that could influence (or not) the results, through the combination of experimental results. Objective: To be able to get successful similar replications, there needs to be interaction between original and replicating experimenters. In this paper, we propose an interaction process for achieving successful similar replications. Method: This process consists of: an adaptation meeting, where experimenters tailor the experiment to the new setting; querying, to settle occasional inquiries while the experiment is being run; and a combination meeting, where experimenters meet to discuss the combination of replication outcomes with previous results. To check its effectiveness, the process has been tested on three different replications of the same experiment. Results: The proposed interaction process has helped to identify new contextual variables that could potentially influence (or not) the experimental results in the three replications run. Additionally, the interaction process has helped to uncover certain problems and deviations that occurred during some of the replications that we would have not been aware of otherwise. Conclusions: There are signs that suggest that it is possible to get successful similar replications in soft- ware engineering experimentation, when there is appropriate interaction among experimenters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After the extensive research on the capabilities of the Boundary Integral Equation Method produced during the past years the versatility of its applications has been well founded. Maybe the years to come will see the in-depth analysis of several conflictive points, for example, adaptive integration, solution of the system of equations, etc. This line is clear in academic research. In this paper we comment on the incidence of the manner of imposing the boundary conditions in 3-D coupled problems. Here the effects are particularly magnified: in the first place by the simple model used (constant elements) and secondly by the process of solution, i.e. first a potential problem is solved and then the results are used as data for an elasticity problem. The errors add to both processes and small disturbances, unimportant in separated problems, can produce serious errors in the final results. The specific problem we have chosen is especially interesting. Although more general cases (i.e. transient)can be treated, here the domain integrals can be converted into boundary ones and the influence of the manner in which boundary conditions are applied will reflect the whole importance of the problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The EFDA-ITER programme for materials wants to develop new structural materials for future nuclear magnetic fusion reactors. In this context, special attention must be paid in the development of new composite materials that could support the hard working conditions of the nuclear fusion reactors: high temperature, high stresses, and high radiation.