30 resultados para probabilistic Hough transform
em Universidad Politécnica de Madrid
Resumo:
This paper proposes a new method, oriented to crop row detection in images from maize fields with high weed pressure. The vision system is designed to be installed onboard a mobile agricultural vehicle, i.e. submitted to gyros, vibrations and undesired movements. The images are captured under image perspective, being affected by the above undesired effects. The image processing consists of three main processes: image segmentation, double thresholding, based on the Otsu’s method, and crop row detection. Image segmentation is based on the application of a vegetation index, the double thresholding achieves the separation between weeds and crops and the crop row detection applies least squares linear regression for line adjustment. Crop and weed separation becomes effective and the crop row detection can be favorably compared against the classical approach based on the Hough transform. Both gain effectiveness and accuracy thanks to the double thresholding that makes the main finding of the paper.
Resumo:
This work is motivated in providing and evaluating a fusion algorithm of remotely sensed images, i.e. the fusion of a high spatial resolution panchromatic image with a multi-spectral image (also known as pansharpening) using the dual-tree complex wavelet transform (DT-CWT), an effective approach for conducting an analytic and oversampled wavelet transform to reduce aliasing, and in turn reduce shift dependence of the wavelet transform. The proposed scheme includes the definition of a model to establish how information will be extracted from the PAN band and how that information will be injected into the MS bands with low spatial resolution. The approach was applied to Spot 5 images where there are bands falling outside PAN’s spectrum. We propose an optional step in the quality evaluation protocol, which is to study the quality of the merger by regions, where each region represents a specific feature of the image. The results show that DT-CWT based approach offers good spatial quality while retaining the spectral information of original images, case SPOT 5. The additional step facilitates the identification of the most affected regions by the fusion process.
Resumo:
We show a procedure for constructing a probabilistic atlas based on affine moment descriptors. It uses a normalization procedure over the labeled atlas. The proposed linear registration is defined by closed-form expressions involving only geometric moments. This procedure applies both to atlas construction as atlas-based segmentation. We model the likelihood term for each voxel and each label using parametric or nonparametric distributions and the prior term is determined by applying the vote-rule. The probabilistic atlas is built with the variability of our linear registration. We have two segmentation strategy: a) it applies the proposed affine registration to bring the target image into the coordinate frame of the atlas or b) the probabilistic atlas is non-rigidly aligning with the target image, where the probabilistic atlas is previously aligned to the target image with our affine registration. Finally, we adopt a graph cut - Bayesian framework for implementing the atlas-based segmentation.
Resumo:
In this paper, the presynaptic rule, a classical rule for hebbian learning, is revisited. It is shown that the presynaptic rule exhibits relevant synaptic properties like synaptic directionality, and LTP metaplasticity (long-term potentiation threshold metaplasticity). With slight modifications, the presynaptic model also exhibits metaplasticity of the long-term depression threshold, being also consistent with Artola, Brocher and Singer’s (ABS) influential model. Two asymptotically equivalent versions of the presynaptic rule were adopted for this analysis: the first one uses an incremental equation while the second, conditional probabilities. Despite their simplicity, both types of presynaptic rules exhibit sophisticated biological properties, specially the probabilistic version
Resumo:
Extreme weather and climate events have received increased attention in the last few years, due to the often large loss of agriculture business and exponentially increasing costs associated with them and insurance planning. This increased attention raises the question as to whether extreme weather and climate events are truly increasing, whether this is only a perceived increase exacerbated by enhanced media coverage, or both. There are a number of ways extreme climate events can be defined, such as extreme daily temperatures, extreme daily rainfall amounts, and large areas experiencing unusually warm monthly temperatures, among others. In this study, we will focus our attention in frost and heatstroke events measuring it as the number of days under 0 ºC and number of days with daily maximum over 30ºC monthly respectively. We have studied the trends in these extreme events applying a Fast Fourier Transform to the series to clarify the tendency. Lack of long-term climate data suitable for analysis of extremes is the single biggest obstacle to quantifying whether extreme events have changed over the twentieth century, including high temporal and spatial resolution observations of temperatures. However, several series have been grouped in different ways: chosen the longest series independently, by provinces, by main watersheds and altitude. On the other hand, synthetic series generated by Luna and Balairón (AEMet) were also analyzed. The results obtained by different pooling data are discussed concluding the difficulties to assess the extreme events tendencies and high regional variation in the trends.
Resumo:
Voice biometry is classically based on the parameterization and patterning of speech features mainly. The present approach is based on the characterization of phonation features instead (glottal features). The intention is to reduce intra-speaker variability due to the `text'. Through the study of larynx biomechanics it may be seen that the glottal correlates constitute a family of 2-nd order gaussian wavelets. The methodology relies in the extraction of glottal correlates (the glottal source) which are parameterized using wavelet techniques. Classification and pattern matching was carried out using Gaussian Mixture Models. Data of speakers from a balanced database and NIST SRE HASR2 were used in verification experiments. Preliminary results are given and discussed.
Resumo:
A Probabilistic Safety Assessment (PSA) is being developed for a steam-methane reforming hydrogen production plant linked to a High-Temperature Gas Cooled Nuclear Reactor (HTGR). This work is based on the Japan Atomic Energy Research Institute’s (JAERI) High Temperature Test Reactor (HTTR) prototype in Japan. This study has two major objectives: calculate the risk to onsite and offsite individuals, and calculate the frequency of different types of damage to the complex. A simplified HAZOP study was performed to identify initiating events, based on existing studies. The initiating events presented here are methane pipe break, helium pipe break, and PPWC heat exchanger pipe break. Generic data was used for the fault tree analysis and the initiating event frequency. Saphire was used for the PSA analysis. The results show that the average frequency of an accident at this complex is 2.5E-06, which is divided into the various end states. The dominant sequences result in graphite oxidation which does not pose a health risk to the population. The dominant sequences that could affect the population are those that result in a methane explosion and occur 6.6E-8/year, while the other sequences are much less frequent. The health risk presents itself if there are people in the vicinity who could be affected by the explosion. This analysis also demonstrates that an accident in one of the plants has little effect on the other. This is true given the design base distance between the plants, the fact that the reactor is underground, as well as other safety characteristics of the HTGR. Sensitivity studies are being performed in order to determine where additional and improved data is needed.
Resumo:
The selection of predefined analytic grids (partitions of the numeric ranges) to represent input and output functions as histograms has been proposed as a mechanism of approximation in order to control the tradeoff between accuracy and computation times in several áreas ranging from simulation to constraint solving. In particular, the application of interval methods for probabilistic function characterization has been shown to have advantages over other methods based on the simulation of random samples. However, standard interval arithmetic has always been used for the computation steps. In this paper, we introduce an alternative approximate arithmetic aimed at controlling the cost of the interval operations. Its distinctive feature is that grids are taken into account by the operators. We apply the technique in the context of probability density functions in order to improve the accuracy of the probability estimates. Results show that this approach has advantages over existing approaches in some particular situations, although computation times tend to increase significantly when analyzing large functions.
Resumo:
La mayor parte de los entornos diseñados por el hombre presentan características geométricas específicas. En ellos es frecuente encontrar formas poligonales, rectangulares, circulares . . . con una serie de relaciones típicas entre distintos elementos del entorno. Introducir este tipo de conocimiento en el proceso de construcción de mapas de un robot móvil puede mejorar notablemente la calidad y la precisión de los mapas resultantes. También puede hacerlos más útiles de cara a un razonamiento de más alto nivel. Cuando la construcción de mapas se formula en un marco probabilístico Bayesiano, una especificación completa del problema requiere considerar cierta información a priori sobre el tipo de entorno. El conocimiento previo puede aplicarse de varias maneras, en esta tesis se presentan dos marcos diferentes: uno basado en el uso de primitivas geométricas y otro que emplea un método de representación cercano al espacio de las medidas brutas. Un enfoque basado en características geométricas supone implícitamente imponer un cierto modelo a priori para el entorno. En este sentido, el desarrollo de una solución al problema SLAM mediante la optimización de un grafo de características geométricas constituye un primer paso hacia nuevos métodos de construcción de mapas en entornos estructurados. En el primero de los dos marcos propuestos, el sistema deduce la información a priori a aplicar en cada caso en base a una extensa colección de posibles modelos geométricos genéricos, siguiendo un método de Maximización de la Esperanza para hallar la estructura y el mapa más probables. La representación de la estructura del entorno se basa en un enfoque jerárquico, con diferentes niveles de abstracción para los distintos elementos geométricos que puedan describirlo. Se llevaron a cabo diversos experimentos para mostrar la versatilidad y el buen funcionamiento del método propuesto. En el segundo marco, el usuario puede definir diferentes modelos de estructura para el entorno mediante grupos de restricciones y energías locales entre puntos vecinos de un conjunto de datos del mismo. El grupo de restricciones que se aplica a cada grupo de puntos depende de la topología, que es inferida por el propio sistema. De este modo, se pueden incorporar nuevos modelos genéricos de estructura para el entorno con gran flexibilidad y facilidad. Se realizaron distintos experimentos para demostrar la flexibilidad y los buenos resultados del enfoque propuesto. Abstract Most human designed environments present specific geometrical characteristics. In them, it is easy to find polygonal, rectangular and circular shapes, with a series of typical relations between different elements of the environment. Introducing this kind of knowledge in the mapping process of mobile robots can notably improve the quality and accuracy of the resulting maps. It can also make them more suitable for higher level reasoning applications. When mapping is formulated in a Bayesian probabilistic framework, a complete specification of the problem requires considering a prior for the environment. The prior over the structure of the environment can be applied in several ways; this dissertation presents two different frameworks, one using a feature based approach and another one employing a dense representation close to the measurements space. A feature based approach implicitly imposes a prior for the environment. In this sense, feature based graph SLAM was a first step towards a new mapping solution for structured scenarios. In the first framework, the prior is inferred by the system from a wide collection of feature based priors, following an Expectation-Maximization approach to obtain the most probable structure and the most probable map. The representation of the structure of the environment is based on a hierarchical model with different levels of abstraction for the geometrical elements describing it. Various experiments were conducted to show the versatility and the good performance of the proposed method. In the second framework, different priors can be defined by the user as sets of local constraints and energies for consecutive points in a range scan from a given environment. The set of constraints applied to each group of points depends on the topology, which is inferred by the system. This way, flexible and generic priors can be incorporated very easily. Several tests were carried out to demonstrate the flexibility and the good results of the proposed approach.
Resumo:
Opportunities offered by high performance computing provide a significant degree of promise in the enhancement of the performance of real-time flood forecasting systems. In this paper, a real-time framework for probabilistic flood forecasting through data assimilation is presented. The distributed rainfall-runoff real-time interactive basin simulator (RIBS) model is selected to simulate the hydrological process in the basin. Although the RIBS model is deterministic, it is run in a probabilistic way through the results of calibration developed in a previous work performed by the authors that identifies the probability distribution functions that best characterise the most relevant model parameters. Adaptive techniques improve the result of flood forecasts because the model can be adapted to observations in real time as new information is available. The new adaptive forecast model based on genetic programming as a data assimilation technique is compared with the previously developed flood forecast model based on the calibration results. Both models are probabilistic as they generate an ensemble of hydrographs, taking the different uncertainties inherent in any forecast process into account. The Manzanares River basin was selected as a case study, with the process being computationally intensive as it requires simulation of many replicas of the ensemble in real time.
Resumo:
Thanks to their inherent properties, probabilistic graphical models are one of the prime candidates for machine learning and decision making tasks especially in uncertain domains. Their capabilities, like representation, inference and learning, if used effectively, can greatly help to build intelligent systems that are able to act accordingly in different problem domains. Evolutionary algorithms is one such discipline that has employed probabilistic graphical models to improve the search for optimal solutions in complex problems. This paper shows how probabilistic graphical models have been used in evolutionary algorithms to improve their performance in solving complex problems. Specifically, we give a survey of probabilistic model building-based evolutionary algorithms, called estimation of distribution algorithms, and compare different methods for probabilistic modeling in these algorithms.
Resumo:
Adaptive embedded systems are required in various applications. This work addresses these needs in the area of adaptive image compression in FPGA devices. A simplified version of an evolution strategy is utilized to optimize wavelet filters of a Discrete Wavelet Transform algorithm. We propose an adaptive image compression system in FPGA where optimized memory architecture, parallel processing and optimized task scheduling allow reducing the time of evolution. The proposed solution has been extensively evaluated in terms of the quality of compression as well as the processing time. The proposed architecture reduces the time of evolution by 44% compared to our previous reports while maintaining the quality of compression unchanged with respect to existing implementations. The system is able to find an optimized set of wavelet filters in less than 2 min whenever the input type of data changes.
Resumo:
We present a computing model based on the DNA strand displacement technique which performs Bayesian inference. The model will take single stranded DNA as input data, representing the presence or absence of a specific molecular signal (evidence). The program logic encodes the prior probability of a disease and the conditional probability of a signal given the disease playing with a set of different DNA complexes and their ratios. When the input and program molecules interact, they release a different pair of single stranded DNA species whose relative proportion represents the application of Bayes? Law: the conditional probability of the disease given the signal. The models presented in this paper can empower the application of probabilistic reasoning in genetic diagnosis in vitro.
Resumo:
In this paper, the fusion of probabilistic knowledge-based classification rules and learning automata theory is proposed and as a result we present a set of probabilistic classification rules with self-learning capability. The probabilities of the classification rules change dynamically guided by a supervised reinforcement process aimed at obtaining an optimum classification accuracy. This novel classifier is applied to the automatic recognition of digital images corresponding to visual landmarks for the autonomous navigation of an unmanned aerial vehicle (UAV) developed by the authors. The classification accuracy of the proposed classifier and its comparison with well-established pattern recognition methods is finally reported.
Resumo:
Wireless sensor networks (WSNs) consist of thousands of nodes that need to communicate with each other. However, it is possible that some nodes are isolated from other nodes due to limited communication range. This paper focuses on the influence of communication range on the probability that all nodes are connected under two conditions, respectively: (1) all nodes have the same communication range, and (2) communication range of each node is a random variable. In the former case, this work proves that, for 0menor queepsmenor quee^(-1) , if the probability of the network being connected is 0.36eps , by means of increasing communication range by constant C(eps) , the probability of network being connected is at least 1-eps. Explicit function C(eps) is given. It turns out that, once the network is connected, it also makes the WSNs resilient against nodes failure. In the latter case, this paper proposes that the network connection probability is modeled as Cox process. The change of network connection probability with respect to distribution parameters and resilience performance is presented. Finally, a method to decide the distribution parameters of node communication range in order to satisfy a given network connection probability is developed.