8 resultados para principal component regression
em Universidad Politécnica de Madrid
Resumo:
FBGs are excellent strain sensors, because of its low size and multiplexing capability. Tens to hundred of sensors may be embedded into a structure, as it has already been demonstrated. Nevertheless, they only afford strain measurements at local points, so unless the damage affects the strain readings in a distinguishable manner, damage will go undetected. This paper show the experimental results obtained on the wing of a UAV, instrumented with 32 FBGs, before and after small damages were introduced. The PCA algorithm was able to distinguish the damage cases, even for small cracks. Principal Component Analysis (PCA) is a technique of multivariable analysis to reduce a complex data set to a lower dimension and reveal some hidden patterns that underlie.
Resumo:
The use of a common environment for processing different powder foods in the industry has increased the risk of finding peanut traces in powder foods. The analytical methods commonly used for detection of peanut such as enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR) represent high specificity and sensitivity but are destructive and time-consuming, and require highly skilled experimenters. The feasibility of NIR hyperspectral imaging (HSI) is studied for the detection of peanut traces down to 0.01% by weight. A principal-component analysis (PCA) was carried out on a dataset of peanut and flour spectra. The obtained loadings were applied to the HSI images of adulterated wheat flour samples with peanut traces. As a result, HSI images were reduced to score images with enhanced contrast between peanut and flour particles. Finally, a threshold was fixed in score images to obtain a binary classification image, and the percentage of peanut adulteration was compared with the percentage of pixels identified as peanut particles. This study allowed the detection of traces of peanut down to 0.01% and quantification of peanut adulteration from 10% to 0.1% with a coefficient of determination (r2) of 0.946. These results show the feasibility of using HSI systems for the detection of peanut traces in conjunction with chemical procedures, such as RT-PCR and ELISA to facilitate enhanced quality-control surveillance on food-product processing lines.
Resumo:
Este trabajo presenta una solución al problema del reconocimiento del género de un rostro humano a partir de una imagen. Adoptamos una aproximación que utiliza la cara completa a través de la textura de la cara normalizada y redimensionada como entrada a un clasificador Näive Bayes. Presentamos la técnica de Análisis de Componentes Principales Probabilístico Condicionado-a-la-Clase (CC-PPCA) para reducir la dimensionalidad de los vectores de características para la clasificación y asegurar la asunción de independencia para el clasificador. Esta nueva aproximación tiene la deseable propiedad de presentar un modelo paramétrico sencillo para las marginales. Además, este modelo puede estimarse con muy pocos datos. En los experimentos que hemos desarrollados mostramos que CC-PPCA obtiene un 90% de acierto en la clasificación, resultado muy similar al mejor presentado en la literatura---ABSTRACT---This paper presents a solution to the problem of recognizing the gender of a human face from an image. We adopt a holistic approach by using the cropped and normalized texture of the face as input to a Naïve Bayes classifier. First it is introduced the Class-Conditional Probabilistic Principal Component Analysis (CC-PPCA) technique to reduce the dimensionality of the classification attribute vector and enforce the independence assumption of the classifier. This new approach has the desirable property of a simple parametric model for the marginals. Moreover this model can be estimated with very few data. In the experiments conducted we show that using CCPPCA we get 90% classification accuracy, which is similar result to the best in the literature. The proposed method is very simple to train and implement.
Resumo:
Developing countries are experiencing unprecedented levels of economic growth. As a result, they will be responsible for most of the future growth in energy demand and greenhouse gas (GHG) emissions. Curbing GHG emissions in developing countries has become one of the cornerstones of a future international agreement under the United Nations Framework Convention for Climate Change (UNFCCC). However, setting caps for developing countries’ GHG emissions has encountered strong resistance in the current round of negotiations. Continued economic growth that allows poverty eradication is still the main priority for most developing countries, and caps are perceived as a constraint to future growth prospects. The development, transfer and use of low-carbon technologies have more positive connotations, and are seen as the potential path towards low-carbon development. So far, the success of the UNFCCC process in improving the levels of technology transfer (TT) to developing countries has been limited. This thesis analyses the causes for such limited success and seeks to improve on the understanding about what constitutes TT in the field of climate change, establish the factors that enable them in developing countries and determine which policies could be implemented to reinforce these factors. Despite the wide recognition of the importance of technology and knowledge transfer to developing countries in the climate change mitigation policy agenda, this issue has not received sufficient attention in academic research. Current definitions of climate change TT barely take into account the perspective of actors involved in actual climate change TT activities, while respective measurements do not bear in mind the diversity of channels through which these happen and the outputs and effects that they convey. Furthermore, the enabling factors for TT in non-BRIC (Brazil, Russia, India, China) developing countries have been seldom investigated, and policy recommendations to improve the level and quality of TTs to developing countries have not been adapted to the specific needs of highly heterogeneous countries, commonly denominated as “developing countries”. This thesis contributes to enriching the climate change TT debate from the perspective of a smaller emerging economy (Chile) and by undertaking a quantitative analysis of enabling factors for TT in a large sample of developing countries. Two methodological approaches are used to study climate change TT: comparative case study analysis and quantitative analysis. Comparative case studies analyse TT processes in ten cases based in Chile, all of which share the same economic, technological and policy frameworks, thus enabling us to draw conclusions on the enabling factors and obstacles operating in TT processes. The quantitative analysis uses three methodologies – principal component analysis, multiple regression analysis and cluster analysis – to assess the performance of developing countries in a number of enabling factors and the relationship between these factors and indicators of TT, as well as to create groups of developing countries with similar performances. The findings of this thesis are structured to provide responses to four main research questions: What constitutes technology transfer and how does it happen? Is it possible to measure technology transfer, and what are the main challenges in doing so? Which factors enable climate change technology transfer to developing countries? And how do different developing countries perform in these enabling factors, and how can differentiated policy priorities be defined accordingly? vi Resumen Los paises en desarrollo estan experimentando niveles de crecimiento economico sin precedentes. Como consecuencia, se espera que sean responsables de la mayor parte del futuro crecimiento global en demanda energetica y emisiones de Gases de Efecto de Invernadero (GEI). Reducir las emisiones de GEI en los paises en desarrollo es por tanto uno de los pilares de un futuro acuerdo internacional en el marco de la Convencion Marco de las Naciones Unidas para el Cambio Climatico (UNFCCC). La posibilidad de compromisos vinculantes de reduccion de emisiones de GEI ha sido rechazada por los paises en desarrollo, que perciben estos limites como frenos a su desarrollo economico y a su prioridad principal de erradicacion de la pobreza. El desarrollo, transferencia y uso de tecnologias bajas en carbono tiene connotaciones mas positivas y se percibe como la via hacia un crecimiento bajo en carbono. Hasta el momento, la UNFCCC ha tenido un exito limitado en la promocion de transferencias de tecnologia (TT) a paises en desarrollo. Esta tesis analiza las causas de este resultado y busca mejorar la comprension sobre que constituye transferencia de tecnologia en el area de cambio climatico, cuales son los factores que la facilitan en paises en desarrollo y que politicas podrian implementarse para reforzar dichos factores. A pesar del extendido reconocimiento sobre la importancia de la transferencia de tecnologia a paises en desarrollo en la agenda politica de cambio climatico, esta cuestion no ha sido suficientemente atendida por la investigacion existente. Las definiciones actuales de transferencia de tecnologia relacionada con la mitigacion del cambio climatico no tienen en cuenta la diversidad de canales por las que se manifiestan o los efectos que consiguen. Los factores facilitadores de TT en paises en desarrollo no BRIC (Brasil, Rusia, India y China) apenas han sido investigados, y las recomendaciones politicas para aumentar el nivel y la calidad de la TT no se han adaptado a las necesidades especificas de paises muy heterogeneos aglutinados bajo el denominado grupo de "paises en desarrollo". Esta tesis contribuye a enriquecer el debate sobre la TT de cambio climatico con la perspectiva de una economia emergente de pequeno tamano (Chile) y el analisis cuantitativo de factores que facilitan la TT en una amplia muestra de paises en desarrollo. Se utilizan dos metodologias para el estudio de la TT a paises en desarrollo: analisis comparativo de casos de estudio y analisis cuantitativo basado en metodos multivariantes. Los casos de estudio analizan procesos de TT en diez casos basados en Chile, para derivar conclusiones sobre los factores que facilitan u obstaculizan el proceso de transferencia. El analisis cuantitativo multivariante utiliza tres metodologias: regresion multiple, analisis de componentes principales y analisis cluster. Con dichas metodologias se busca analizar el posicionamiento de diversos paises en cuanto a factores que facilitan la TT; las relaciones entre dichos factores e indicadores de transferencia tecnologica; y crear grupos de paises con caracteristicas similares que podrian beneficiarse de politicas similares para la promocion de la transferencia de tecnologia. Los resultados de la tesis se estructuran en torno a cuatro preguntas de investigacion: .Que es la transferencia de tecnologia y como ocurre?; .Es posible medir la transferencia de tecnologias de bajo carbono?; .Que factores facilitan la transferencia de tecnologias de bajo carbono a paises en desarrollo? y .Como se puede agrupar a los paises en desarrollo en funcion de sus necesidades politicas para la promocion de la transferencia de tecnologias de bajo carbono?
Resumo:
Time domain laser reflectance spectroscopy (TDRS) was applied for the first time to evaluate internal fruit quality. This technique, known in medicine-related knowledge areas, has not been used before in agricultural or food research. It allows the simultaneous non-destructive measuring of two optical characteristics of the tissues: light scattering and absorption. Models to measure firmness, sugar & acid contents in kiwifruit, tomato, apple, peach, nectarine and other fruits were built using sequential statistical techniques: principal component analysis, multiple stepwise linear regression, clustering and discriminant analysis. Consistent correlations were established between the two parameters measured with TDRS, i.e. absorption & transport scattering coefficients, with chemical constituents (sugars and acids) and firmness, respectively. Classification models were built to sort fruits into three quality grades, according to their firmness, soluble solids and acidity.
Resumo:
Firmness sensing of selected varieties of apples, pears and avocado fruits has been developed using a nondestructive impact technique. In addition to firmness measurements, postharvest ripeness of apples and pears was monitored by spectrophotometric reflectance measurements, and that of avocadoes by Hunter colour measurements. The data obtained from firmness sensing were analyzed by three analytical procedures: principal component, correlation and regression, and stepwise discriminant analysis. A new software was developed to control the impact test, analyse the data, and sort the fruit into specified classes, based on the criteria obtained from a training procedure. Similar procedures were used to analyse the reflectance and colour data. Both sensing systems were able to classify fruits w i th good accuracy.
Resumo:
La Responsabilidad Social Corporativa (RSC) sigue constituyendo en la actualidad un área de estudio de elevado interés tanto para la comunidad académica como para los negocios en general. A pesar del gran número de investigaciones realizadas en las pasadas décadas sobre los distintos aspectos que la caracterizan, y la definición generalizada de políticas relacionadas en las compañías más importantes, existen todavía algunos asuntos clave sobre los que se plantean interrogantes fundamentales. La complejidad asociada al constructo RSC y su carácter intrínsecamente dinámico explican en parte esta afirmación. En su aplicación práctica, las dudas sobre la RSC se enfocan hoy en día hacia su implantación con carácter permanente en el día a día de las organizaciones, la relevancia estratégica de las principales iniciativas, o la posibilidad de obtención de beneficios a medio y largo plazo. Se observa de esta forma la traslación de los debates principales hacia las consecuencias más estratégicas de dichas políticas, influenciados por prestigiosos estudios académicos en los que se caracteriza la denominada RSC Estratégica (RSCE), y por las principales organizaciones de certificación de memorias anuales de RSC y sostenibilidad. En este contexto se sitúa el objeto principal de esta investigación, consistente en el diseño de un modelo de implantación de RSCE que permita no sólo identificar los factores más importantes a tener en consideración para su éxito, sino para caracterizar las potenciales formas de creación de valor que pueden surgir de la aplicación del mismo. Se argumenta la elección del tema por considerarse que los asuntos asociados a la RSC no están lo suficientemente explorados desde la visión estratégica más actual, y por constituir la creación de valor el objetivo más crítico dentro de los procesos directivos de planificación estratégica. De esta forma, se utilizan dos metodologías para destacar qué factores son esenciales en la implantación de la RSCE, con qué fines las compañías aplican esas políticas, y qué resultados obtienen como consecuencia: análisis comparativo de casos de estudio y análisis estadístico cuantitativo. Los casos de estudio analizan en profundidad políticas globales de RSCE bajo diferentes puntos de vista, para derivar conclusiones sobre los factores que facilitan u obstaculizan su implantación permanente en las organizaciones. Su desarrollo se estructura en torno a un marco conceptual de referencia obtenido a través de la revisión bibliográfica específica, y se complementa con la información primaria y secundaria de investigación. Por su parte, el análisis cuantitativo se desarrolla mediante tres técnicas exploratorias: estadística descriptiva, regresión múltiple y análisis de componentes principales. Su aplicación combinada va a posibilitar el contraste de aspectos destacados en los análisis de casos, así como la configuración final del modelo de implantación, y la expresión numérica de la creación de valor a través de la RSCE en función de las dimensiones estratégicas consideradas. En consecuencia, los resultados de la tesis se estructuran alrededor de tres preguntas de investigación: ¿cómo se están produciendo y qué caracterización presentan los beneficios que resultan como consecuencia de la implantación de la RSCE en los procesos de planificación estratégica de las compañías?, ¿qué factores esenciales y característicos de la RSCE pueden resultar críticos en los procesos de implantación y futuro desarrollo?, y ¿qué importancia puede tener en el medio y largo plazo el poder de decisión de compra de los consumidores y usuarios finales en la implantación y desarrollo de políticas de RSCE? ABSTRACT Corporate Social Responsibility (CSR) remains a study area of high interest today to both the academic community and businesses in general. Despite the large number of investigations of various aspects of CSR in past decades, and its generalized consideration by the world’s most important companies, there are still some key issues and fundamental questions to resolve. The complexity associated with the CSR construct and its inherently dynamic character, partly explains this statement. In its practical application, doubts about CSR arise today about its permanent implementation in normal business activities, the strategic relevance of related policies, and the possibility of making profits in the medium and long term. It is observed in this way the translation of the main debates towards the more strategic consequences of these policies, influenced by prestigious academic studies that characterize the so-called Strategic CSR (SCSR), and by leading certification agencies of CSR and sustainability reports. In this context, the main purpose of this investigation is to design a model of SCSR for implementation that allows one to not only identify the most important factors to consider for SCSR success, but also to characterize potential forms of value creation that can arise from its application. The selection of this research approach is justified because it is believed that important issues that are associated with CSR have not been sufficiently explored from the aspect of the strategic vision in the current context, and because value creation constitutes the most critical objective within the strategic planning steering processes. Thus, two methods are used to highlight which factors are essential in SCSR implementation processes, the end to which companies apply these policies, and the kind of results that they expect. These methods are: comparative analysis of case studies and quantitative statistical analysis. The case studies discuss in depth SCSR global policies under different perspectives to draw conclusions about the factors that facilitate or hinder permanent implantation in organizations. Their development is structured around a conceptual framework that is obtained by review of specific literature, and is complemented by primary and secondary research information. On the other hand, quantitative analysis is developed by means of three exploratory techniques: descriptive statistics, multiple regression and principal component analysis. Their combined application facilitates a contrast of highlighted aspects in analyzing cases, the final configuration of the implementation model, and the numerical expression of value creation by SCSR as a consequence of the strategic dimensions considered by companies. Finally, the results of the thesis are structured around three research questions: what are the benefits that result from the implementation of SCSR policies in companies’ strategic planning processes?, which essential SCSR factors are potentially critical in the implementation and future development of companies’ processes?, and how decisive in the medium and long term will be the purchase decision power of consumers to the success of SCSR policies?
Resumo:
In the present paper, 1-year PM10 and PM 2.5 data from roadside and urban background monitoring stations in Athens (Greece), Madrid (Spain) and London (UK) are analysed in relation to other air pollutants (NO,NO2,NOx,CO,O3 and SO2)and several meteorological parameters (wind velocity, temperature, relative humidity, precipitation, solar radiation and atmospheric pressure), in order to investigate the sources and factors affecting particulate pollution in large European cities. Principal component and regression analyses are therefore used to quantify the contribution of both combustion and non-combustion sources to the PM10 and PM 2.5 levels observed. The analysis reveals that the EU legislated PM 10 and PM2.5 limit values are frequently breached, forming a potential public health hazard in the areas studied. The seasonal variability patterns of particulates varies among cities and sites, with Athens and Madrid presenting higher PM10 concentrations during the warm period and suggesting the larger relative contribution of secondary and natural particles during hot and dry days. It is estimated that the contribution of non-combustion sources varies substantially among cities, sites and seasons and ranges between 38-67% and 40-62% in London, 26-50% and 20-62% in Athens, and 31-58% and 33-68% in Madrid, for both PM10 and PM 2.5. Higher contributions from non-combustion sources are found at urban background sites in all three cities, whereas in the traffic sites the seasonal differences are smaller. In addition, the non-combustion fraction of both particle metrics is higher during the warm season at all sites. On the whole, the analysis provides evidence of the substantial impact of non-combustion sources on local air quality in all three cities. While vehicular exhaust emissions carry a large part of the risk posed on human health by particle exposure, it is most likely that mitigation measures designed for their reduction will have a major effect only at traffic sites and additional measures will be necessary for the control of background levels. However, efforts in mitigation strategies should always focus on optimal health effects.