3 resultados para population parameters
em Universidad Politécnica de Madrid
Resumo:
Below are the results of the survey of the Iberian lynx obtained with camera-trapping between 2000 and 2007 in Sierra Morena. Two very important aspects of camera-trapping concerning its efficiency are also analyzed. The first is the evolution along years according to the camera-trapping type used of two efficiency indicators. The results obtained demonstrate that the most efficient lure is rabbit, though it is the less proven (92 trap-nights), followed by camera-trapping in the most frequent marking places (latrines). And, we propose as a novel the concept of use area as a spatial reference unit for the camera-trapping monitoring of non radio-marked animals is proposed, and its validity discussed.
Resumo:
UV-absorbing covers reduce the incidence of injurious insect pests and viruses in protected crops. In the present study, the effect of a UV-absorbing net (Bionet) on the spatio-temporal dynamics of the potato aphid on lettuce plants was evaluated. A field experiment was conducted during three seasons in two identical tunnels divided in four plots. A set of lettuce plants were artificially infested with Macrosiphum euphorbiae adults and the population was estimated by counting aphids on every plant over 7 to 9 weeks. Insect population grew exponentially but a significantly lower aphid density was present on plants grown under the UV-absorbing cover compared to a standard 50 mesh net. Similarly, in laboratory conditions, life table parameters were significantly reduced under the Bionet. Moreover, SADIE analysis showed that the spatial distribution of aphids was effectively limited under the UV-absorbing nets. Our results indicate that UV-absorbing nets should be considered as an important component of lettuce indoor cropping systems preventing pesticide applications and reducing the risk of spread of aphid-borne virus diseases.
Resumo:
We consider a simplified system of a growing colony of cells described as a free boundary problem. The system consists of two hyperbolic equations of first order coupled to an ODE to describe the behavior of the boundary. The system for cell populations includes non-local terms of integral type in the coefficients. By introducing a comparison with solutions of an ODE's system, we show that there exists a unique homogeneous steady state which is globally asymptotically stable for a range of parameters under the assumption of radially symmetric initial data.