3 resultados para personality pathology

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The employment of nonlinear analysis techniques for automatic voice pathology detection systems has gained popularity due to the ability of such techniques for dealing with the underlying nonlinear phenomena. On this respect, characterization using nonlinear analysis typically employs the classical Correlation Dimension and the largest Lyapunov Exponent, as well as some regularity quantifiers computing the system predictability. Mostly, regularity features highly depend on a correct choosing of some parameters. One of those, the delay time �, is usually fixed to be 1. Nonetheless, it has been stated that a unity � can not avoid linear correlation of the time series and hence, may not correctly capture system nonlinearities. Therefore, present work studies the influence of the � parameter on the estimation of regularity features. Three � estimations are considered: the baseline value 1; a � based on the Average Automutual Information criterion; and � chosen from the embedding window. Testing results obtained for pathological voice suggest that an improved accuracy might be obtained by using a � value different from 1, as it accounts for the underlying nonlinearities of the voice signal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research into software engineering teams focuses on human and social team factors. Social psychology deals with the study of team formation and has found that personality factors and group processes such as team climate are related to team effectiveness. However, there are only a handful of empirical studies dealing with personality and team climate and their relationship to software development team effectiveness. Objective We present aggregate results of a twice replicated quasi-experiment that evaluates the relationships between personality, team climate, product quality and satisfaction in software development teams. Method Our experimental study measures the personalities of team members based on the Big Five personality traits (openness, conscientiousness, extraversion, agreeableness, neuroticism) and team climate factors (participative safety, support for innovation, team vision and task orientation) preferences and perceptions. We aggregate the results of the three studies through a meta-analysis of correlations. The study was conducted with students. Results The aggregation of results from the baseline experiment and two replications corroborates the following findings. There is a positive relationship between all four climate factors and satisfaction in software development teams. Teams whose members score highest for the agreeableness personality factor have the highest satisfaction levels. The results unveil a significant positive correlation between the extraversion personality factor and software product quality. High participative safety and task orientation climate perceptions are significantly related to quality. Conclusions First, more efficient software development teams can be formed heeding personality factors like agreeableness and extraversion. Second, the team climate generated in software development teams should be monitored for team member satisfaction. Finally, aspects like people feeling safe giving their opinions or encouraging team members to work hard at their job can have an impact on software quality. Software project managers can take advantage of these factors to promote developer satisfaction and improve the resulting product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustic parameters are frequently used to assess the presence of pathologies in human voice. Many of them have demonstrated to be useful but in some cases its results could be optimized by selecting appropriate working margins. In this study two indices, CIL and RALA, obtained from Modulation Spectra are described and tuned using different frame lengths and frequency ranges to maximize AUC in normal to pathological voice detection. After the tuning process, AUC reaches 0.96 and 0.95 values for CIL and RALA respectively representing an improvement of 16 % and 12 % at each case respect to the typical tuning based only on frame length selection.