5 resultados para peak retardation

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering the measurement procedures recommended by the ICNIRP, this communication is a proposal for a measurement procedure based in the maximum peak values of equivalent plane wave power density. This procedure has been included in a project being developed in Leganés, Spain. The project plans to deploy a real time monitoring system for RF to provide the city with a useful tool to adapt the environmental EM conditions to the new regulations approved. A first stage consisting of 105 measurement points has been finished and all the values are under the threshold of the regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an experimental study on the generation of high-peak-power short optical pulses from a fully integrated master-oscillator power-amplifier emitting at 1.5 μm. High-peak-power (2.7 W) optical pulses with short duration (100 ps) have been generated by gain switching the master oscillator under optimized driving conditions. The static and dynamic characteristics of the device have been studied as a function of the driving conditions. The ripples appearing in the power-current characteristics under cw conditions have been attributed to mode hopping between the master oscillator resonant mode and the Fabry-Perot modes of the entire device cavity. Although compound cavity effects have been evidenced to affect the static and dynamic performance of the device, we have demonstrated that trains of single-mode short optical pulses at gigahertz frequencies can be conveniently generated in these devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impedance-based stability-assessment method has turned out to be a very effective tool and its usage is rapidly growing in different applications ranging from the conventional interconnected dc/dc systems to the grid-connected renewable energy systems. The results are sometime given as a certain forbidden region in the complex plane out of which the impedance ratio--known as minor-loop gain--shall stay for ensuring robust stability. This letter discusses the circle-like forbidden region occupying minimum area in the complex plane, defined by applying maximum peak criteria, which is well-known theory in control engineering. The investigation shows that the circle-like forbidden region will ensure robust stability only if the impedance-based minor-loop gain is determined at the very input or output of each subsystem within the interconnected system. Experimental evidence is provided based on a small-scale dc/dc distributed system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical study of cepstral peak prominence (CPP) is presented, intended to provide an insight into its meaning and relation with voice perturbation parameters. To carry out this analysis, a parametric approach is adopted in which voice production is modelled using the traditional source-filter model and the first cepstral peak is assumed to have Gaussian shape. It is concluded that the meaning of CPP is very similar to that of the first rahmonic and some insights are provided on its dependence with fundamental frequency and vocal tract resonances. It is further shown that CPP integrates measures of voice waveform and periodicity perturbations, be them either amplitude, frequency or noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphosilicate glass (PSG), fabricated by tube furnace diffusion using a POCl3 source, is widely used as a dopant source in the manufacturing of crystalline silicon solar cells. Although it has been a widely addressed research topic for a long time, there is still lack of a comprehensive understanding of aspects such as the growth, the chemical composition, possible phosphorus depletion, the resulting in-diffused phosphorus profiles, the gettering behavior in silicon, and finally the metal-contact formation. This paper addresses these different aspects simultaneously to further optimize process conditions for photovoltaic applications. To do so, a wide range of experimental data is used and combined with device and process simulations, leading to a more comprehensive interpretation. The results show that slight changes in the PSG process conditions can produce high-quality emitters. It is predicted that PSG processes at 860 °C for 60 min in combination with an etch-back and laser doping from PSG layer results in high-quality emitters with a peak dopant density Npeak = 8.0 × 1018 cm−3 and a junction depth dj = 0.4 μm, resulting in a sheet resistivityρsh = 380 Ω/sq and a saturation current-density J0 below 10 fA/cm2. With these properties, the POCl3 process can compete with ion implantation or doped oxide approaches.