57 resultados para parallelization
em Universidad Politécnica de Madrid
Resumo:
In this paper we will see how the efficiency of the MBS simulations can be improved in two different ways, by considering both an explicit and implicit semi-recursive formulation. The explicit method is based on a double velocity transformation that involves the solution of a redundant but compatible system of equations. The high computational cost of this operation has been drastically reduced by taking into account the sparsity pattern of the system. Regarding this, the goal of this method is the introduction of MA48, a high performance mathematical library provided by Harwell Subroutine Library. The second method proposed in this paper has the particularity that, depending on the case, between 70 and 85% of the computation time is devoted to the evaluation of forces derivatives with respect to the relative position and velocity vectors. Keeping in mind that evaluating these derivatives can be decomposed into concurrent tasks, the main goal of this paper lies on a successful and straightforward parallel implementation that have led to a substantial improvement with a speedup of 3.2 by keeping all the cores busy in a quad-core processor and distributing the workload between them, achieving on this way a huge time reduction by doing an ideal CPU usage
Resumo:
We report on a detailed study of the application and effectiveness of program analysis based on abstract interpretation to automatic program parallelization. We study the case of parallelizing logic programs using the notion of strict independence. We first propose and prove correct a methodology for the application in the parallelization task of the information inferred by abstract interpretation, using a parametric domain. The methodology is generic in the sense of allowing the use of different analysis domains. A number of well-known approximation domains are then studied and the transformation into the parametric domain defined. The transformation directly illustrates the relevance and applicability of each abstract domain for the application. Both local and global analyzers are then built using these domains and embedded in a complete parallelizing compiler. Then, the performance of the domains in this context is assessed through a number of experiments. A comparatively wide range of aspects is studied, from the resources needed by the analyzers in terms of time and memory to the actual benefits obtained from the information inferred. Such benefits are evaluated both in terms of the characteristics of the parallelized code and of the actual speedups obtained from it. The results show that data flow analysis plays an important role in achieving efficient parallelizations, and that the cost of such analysis can be reasonable even for quite sophisticated abstract domains. Furthermore, the results also offer significant insight into the characteristics of the domains, the demands of the application, and the trade-offs involved.
Resumo:
Program specialization optimizes programs for known valúes of the input. It is often the case that the set of possible input valúes is unknown, or this set is infinite. However, a form of specialization can still be performed in such cases by means of abstract interpretation, specialization then being with respect to abstract valúes (substitutions), rather than concrete ones. We study the múltiple specialization of logic programs based on abstract interpretation. This involves in principie, and based on information from global analysis, generating several versions of a program predicate for different uses of such predicate, optimizing these versions, and, finally, producing a new, "multiply specialized" program. While múltiple specialization has received theoretical attention, little previous evidence exists on its practicality. In this paper we report on the incorporation of múltiple specialization in a parallelizing compiler and quantify its effects. A novel approach to the design and implementation of the specialization system is proposed. The resulting implementation techniques result in identical specializations to those of the best previously proposed techniques but require little or no modification of some existing abstract interpreters. Our results show that, using the proposed techniques, the resulting "abstract múltiple specialization" is indeed a relevant technique in practice. In particular, in the parallelizing compiler application, a good number of run-time tests are eliminated and invariants extracted automatically from loops, resulting generally in lower overheads and in several cases in increased speedups.
Resumo:
A framework for the automatic parallelization of (constraint) logic programs is proposed and proved correct. Intuitively, the parallelization process replaces conjunctions of literals with parallel expressions. Such expressions trigger at run-time the exploitation of restricted, goal-level, independent and-parallelism. The parallelization process performs two steps. The first one builds a conditional dependency graph (which can be implified using compile-time analysis information), while the second transforms the resulting graph into linear conditional expressions, the parallel expressions of the &-Prolog language. Several heuristic algorithms for the latter ("annotation") process are proposed and proved correct. Algorithms are also given which determine if there is any loss of parallelism in the linearization process with respect to a proposed notion of maximal parallelism. Finally, a system is presented which implements the proposed approach. The performance of the different annotation algorithms is compared experimentally in this system by studying the time spent in parallelization and the effectiveness of the results in terms of speedups.
Resumo:
Program specialization optimizes programs for known valúes of the input. It is often the case that the set of possible input valúes is unknown, or this set is infinite. However, a form of specialization can still be performed in such cases by means of abstract interpretation, specialization then being with respect to abstract valúes (substitutions), rather than concrete ones. This paper reports on the application of abstract múltiple specialization to automatic program parallelization in the &-Prolog compiler. Abstract executability, the main concept underlying abstract specialization, is formalized, the design of the specialization system presented, and a non-trivial example of specialization in automatic parallelization is given.
Resumo:
This paper presents a study of the effectiveness of global analysis in the parallelization of logic programs using strict independence. A number of well-known approximation domains are selected and tlieir usefulness for the application in hand is explained. Also, methods for using the information provided by such domains to improve parallelization are proposed. Local and global analyses are built using these domains and such analyses are embedded in a complete parallelizing compiler. Then, the performance of the domains (and the system in general) is assessed for this application through a number of experiments. We argüe that the results offer significant insight into the characteristics of these domains, the demands of the application, and the tradeoffs involved.
Resumo:
This paper presents a study of the effectiveness of three different algorithms for the parallelization of logic programs based on compile-time detection of independence among goals. The algorithms are embedded in a complete parallelizing compiler, which incorporates different abstract interpretation-based program analyses. The complete system shows the task of automatic program parallelization to be practical. The trade-offs involved in using each of the algorithms in this task are studied experimentally, weaknesses of these identified, and possible improvements discussed.
Resumo:
There has been significant interest in parallel execution models for logic programs which exploit Independent And-Parallelism (IAP). In these models, it is necessary to determine which goals are independent and therefore eligible for parallel execution and which goals have to wait for which others during execution. Although this can be done at run-time, it can imply a very heavy overhead. In this paper, we present three algorithms for automatic compiletime parallelization of logic programs using IAP. This is done by converting a clause into a graph-based computational form and then transforming this graph into linear expressions based on &-Prolog, a language for IAP. We also present an algorithm which, given a clause, determines if there is any loss of parallelism due to linearization, for the case in which only unconditional parallelism is desired. Finally, the performance of these annotation algorithms is discussed for some benchmark programs.
Resumo:
Abstract is not available
Resumo:
Irregular computations pose some of the most interesting and challenging problems in automatic parallelization. Irregularity appears in certain kinds of numerical problems and is pervasive in symbolic applications. Such computations often use dynamic data structures which make heavy use of pointers. This complicates all the steps of a parallelizing compiler, from independence detection to task partitioning and placement. In the past decade there has been significant progress in the development of parallelizing compilers for logic programming and, more recently, constraint programming. The typical applications of these paradigms frequently involve irregular computations, which arguably makes the techniques used in these compilers potentially interesting. In this paper we introduce in a tutorial way some of the problems faced by parallelizing compilers for logic and constraint programs. These include the need for inter-procedural pointer aliasing analysis for independence detection and having to manage speculative and irregular computations through task granularity control and dynamic task allocation. We also provide pointers to some of the progress made in these áreas. In the associated talk we demónstrate representatives of several generations of these parallelizing compilers.
Resumo:
This paper presents a conditional parallelization process for and-parallelism based on the notion of non-strict independence, a more relaxed notion than the traditional of strict independence. By using this notion, a parallelism annotator can extract more parallelism from programs. On the other hand, the intrinsic complexity of non-strict independence poses new challenges to this task. We report here on the implementation we have accomplished of an annotator for non-strict independence, capable of producing both static and dynamic execution graphs. This implementation, along with the also implemented independence checker and their integration in our system, have resulted what is, to the best of our knowledge, the first parallelizing compiler based on nonstrict independence which produces dynamic execution graphs. The paper also presents a preliminary assessment of the implemented tools, comparing them with the existing ones for strict independence, which shows encouraging results.
Resumo:
The concept of independence has been recently generalized to the constraint logic programming (CLP) paradigm. Also, several abstract domains specifically designed for CLP languages, and whose information can be used to detect the generalized independence conditions, have been recently defined. As a result we are now in a position where automatic parallelization of CLP programs is feasible. In this paper we study the task of automatically parallelizing CLP programs based on such analyses, by transforming them to explicitly concurrent programs in our parallel CC platform (CIAO) as well as to AKL. We describe the analysis and transformation process, and study its efficiency, accuracy, and effectiveness in program parallelization. The information gathered by the analyzers is evaluated not only in terms of its accuracy, i.e. its ability to determine the actual dependencies among the program variables, but also of its effectiveness, measured in terms of code reduction in the resulting parallelized programs. Given that only a few abstract domains have been already defined for CLP, and that none of them were specifically designed for dependency detection, the aim of the evaluation is not only to asses the effectiveness of the available domains, but also to study what additional information it would be desirable to infer, and what domains would be appropriate for further improving the parallelization process.
Resumo:
This report presents an overview of the current work performed by us in the context of the efficient parallel implementation of traditional logic programming systems. The work is based on the &-Prolog System, a system for the automatic parallelization and execution of logic programming languages within the Independent And-parallelism model, and the global analysis and parallelization tools which have been developed for this system. In order to make the report self-contained, we first describe the "classical" tools of the &-Prolog system. We then explain in detail the work performed in improving and generalizing the global analysis and parallelization tools. Also, we describe the objectives which will drive our future work in this area.
Resumo:
This paper focuses on the parallelization of an ocean model applying current multicore processor-based cluster architectures to an irregular computational mesh. The aim is to maximize the efficiency of the computational resources used. To make the best use of the resources offered by these architectures, this parallelization has been addressed at all the hardware levels of modern supercomputers: firstly, exploiting the internal parallelism of the CPU through vectorization; secondly, taking advantage of the multiple cores of each node using OpenMP; and finally, using the cluster nodes to distribute the computational mesh, using MPI for communication within the nodes. The speedup obtained with each parallelization technique as well as the combined overall speedup have been measured for the western Mediterranean Sea for different cluster configurations, achieving a speedup factor of 73.3 using 256 processors. The results also show the efficiency achieved in the different cluster nodes and the advantages obtained by combining OpenMP and MPI versus using only OpenMP or MPI. Finally, the scalability of the model has been analysed by examining computation and communication times as well as the communication and synchronization overhead due to parallelization.
Resumo:
We show a method for parallelizing top down dynamic programs in a straightforward way by a careful choice of a lock-free shared hash table implementation and randomization of the order in which the dynamic program computes its subproblems. This generic approach is applied to dynamic programs for knapsack, shortest paths, and RNA structure alignment, as well as to a state-of-the-art solution for minimizing the máximum number of open stacks. Experimental results are provided on three different modern multicore architectures which show that this parallelization is effective and reasonably scalable. In particular, we obtain over 10 times speedup for 32 threads on the open stacks problem.