15 resultados para parallel kinematic machine

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the sequential execution speed of logic programs has been greatly improved by the concepts introduced in the Warren Abstract Machine (WAM), parallel execution represents the only way to increase this speed beyond the natural limits of sequential systems. However, most proposed parallel logic programming execution models lack the performance optimizations and storage efficiency of sequential systems. This paper presents a parallel abstract machine which is an extension of the WAM and is thus capable of supporting ANDParallelism without giving up the optimizations present in sequential implementations. A suitable instruction set, which can be used as a target by a variety of logic programming languages, is also included. Special instructions are provided to support a generalized version of "Restricted AND-Parallelism" (RAP), a technique which reduces the overhead traditionally associated with the run-time management of variable binding conflicts to a series of simple run-time checks, which select one out of a series of compiled execution graphs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The term "Logic Programming" refers to a variety of computer languages and execution models which are based on the traditional concept of Symbolic Logic. The expressive power of these languages offers promise to be of great assistance in facing the programming challenges of present and future symbolic processing applications in Artificial Intelligence, Knowledge-based systems, and many other areas of computing. The sequential execution speed of logic programs has been greatly improved since the advent of the first interpreters. However, higher inference speeds are still required in order to meet the demands of applications such as those contemplated for next generation computer systems. The execution of logic programs in parallel is currently considered a promising strategy for attaining such inference speeds. Logic Programming in turn appears as a suitable programming paradigm for parallel architectures because of the many opportunities for parallel execution present in the implementation of logic programs. This dissertation presents an efficient parallel execution model for logic programs. The model is described from the source language level down to an "Abstract Machine" level suitable for direct implementation on existing parallel systems or for the design of special purpose parallel architectures. Few assumptions are made at the source language level and therefore the techniques developed and the general Abstract Machine design are applicable to a variety of logic (and also functional) languages. These techniques offer efficient solutions to several areas of parallel Logic Programming implementation previously considered problematic or a source of considerable overhead, such as the detection and handling of variable binding conflicts in AND-Parallelism, the specification of control and management of the execution tree, the treatment of distributed backtracking, and goal scheduling and memory management issues, etc. A parallel Abstract Machine design is offered, specifying data areas, operation, and a suitable instruction set. This design is based on extending to a parallel environment the techniques introduced by the Warren Abstract Machine, which have already made very fast and space efficient sequential systems a reality. Therefore, the model herein presented is capable of retaining sequential execution speed similar to that of high performance sequential systems, while extracting additional gains in speed by efficiently implementing parallel execution. These claims are supported by simulations of the Abstract Machine on sample programs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main purpose of robot calibration is the correction of the possible errors in the robot parameters. This paper presents a method for a kinematic calibration of a parallel robot that is equipped with one camera in hand. In order to preserve the mechanical configuration of the robot, the camera is utilized to acquire incremental positions of the end effector from a spherical object that is fixed in the word reference frame. The positions of the end effector are related to incremental positions of resolvers of the motors of the robot, and a kinematic model of the robot is used to find a new group of parameters which minimizes errors in the kinematic equations. Additionally, properties of the spherical object and intrinsic camera parameters are utilized to model the projection of the object in the image and improving spatial measurements. Finally, the robotic system is designed to carry out tracking tasks and the calibration of the robot is validated by means of integrating the errors of the visual controller.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a novel method for the calibration of a parallel robot, which allows a more accurate configuration instead of a configuration based on nominal parameters. It is used, as the main sensor with one camera installed in the robot hand that determines the relative position of the robot with respect to a spherical object fixed in the working area of the robot. The positions of the end effector are related to the incremental positions of resolvers of the robot motors. A kinematic model of the robot is used to find a new group of parameters, which minimizes errors in the kinematic equations. Additionally, properties of the spherical object and intrinsic camera parameters are utilized to model the projection of the object in the image and thereby improve spatial measurements. Finally, several working tests, static and tracking tests are executed in order to verify how the robotic system behaviour improves by using calibrated parameters against nominal parameters. In order to emphasize that, this proposed new method uses neither external nor expensive sensor. That is why new robots are useful in teaching and research activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a preprocessing module for improving the performance of a Spanish into Spanish Sign Language (Lengua de Signos Espanola: LSE) translation system when dealing with sparse training data. This preprocessing module replaces Spanish words with associated tags. The list with Spanish words (vocabulary) and associated tags used by this module is computed automatically considering those signs that show the highest probability of being the translation of every Spanish word. This automatic tag extraction has been compared to a manual strategy achieving almost the same improvement. In this analysis, several alternatives for dealing with non-relevant words have been studied. Non-relevant words are Spanish words not assigned to any sign. The preprocessing module has been incorporated into two well-known statistical translation architectures: a phrase-based system and a Statistical Finite State Transducer (SFST). This system has been developed for a specific application domain: the renewal of Identity Documents and Driver's License. In order to evaluate the system a parallel corpus made up of 4080 Spanish sentences and their LSE translation has been used. The evaluation results revealed a significant performance improvement when including this preprocessing module. In the phrase-based system, the proposed module has given rise to an increase in BLEU (Bilingual Evaluation Understudy) from 73.8% to 81.0% and an increase in the human evaluation score from 0.64 to 0.83. In the case of SFST, BLEU increased from 70.6% to 78.4% and the human evaluation score from 0.65 to 0.82.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compilation techniques such as those portrayed by the Warren Abstract Machine(WAM) have greatly improved the speed of execution of logic programs. The research presented herein is geared towards providing additional performance to logic programs through the use of parallelism, while preserving the conventional semantics of logic languages. Two áreas to which special attention is given are the preservation of sequential performance and storage efficiency, and the use of low overhead mechanisms for controlling parallel execution. Accordingly, the techniques used for supporting parallelism are efficient extensions of those which have brought high inferencing speeds to sequential implementations. At a lower level, special attention is also given to design and simulation detail and to the architectural implications of the execution model behavior. This paper offers an overview of the basic concepts and techniques used in the parallel design, simulation tools used, and some of the results obtained to date.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract machines provide a certain separation between platformdependent and platform-independent concerns in compilation. Many of the differences between architectures are encapsulated in the speciflc abstract machine implementation and the bytecode is left largely architecture independent. Taking advantage of this fact, we present a framework for estimating upper and lower bounds on the execution times of logic programs running on a bytecode-based abstract machine. Our approach includes a one-time, programindependent proflling stage which calculates constants or functions bounding the execution time of each abstract machine instruction. Then, a compile-time cost estimation phase, using the instruction timing information, infers expressions giving platform-dependent upper and lower bounds on actual execution time as functions of input data sizes for each program. Working at the abstract machine level makes it possible to take into account low-level issues in new architectures and platforms by just reexecuting the calibration stage instead of having to tailor the analysis for each architecture and platform. Applications of such predicted execution times include debugging/veriflcation of time properties, certiflcation of time properties in mobile code, granularity control in parallel/distributed computing, and resource-oriented specialization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We informally discuss several issues related to the parallel execution of logic programming systems and concurrent logic programming systems, and their generalization to constraint programming. We propose a new view of these systems, based on a particular definition of parallelism. We argüe that, under this view, a large number of the actual systems and models can be explained through the application, at different levéis of granularity, of only a few basic principies: determinism, non-failure, independence (also referred to as stability), granularity, etc. Also, and based on the convergence of concepts that this view brings, we sketch a model for the implementation of several parallel constraint logic programming source languages and models based on a common, generic abstract machine and an intermedíate kernel language.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a parallel graph narrowing machine, which is used to implement a functional logic language on a shared memory multiprocessor. It is an extensión of an abstract machine for a purely functional language. The result is a programmed graph reduction machine which integrates the mechanisms of unification, backtracking, and independent and-parallelism. In the machine, the subexpressions of an expression can run in parallel. In the case of backtracking, the structure of an expression is used to avoid the reevaluation of subexpressions as far as possible. Deterministic computations are detected. Their results are maintained and need not be reevaluated after backtracking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a computational methodology -"B-LOG"-, which offers the potential for an effective implementation of Logic Programming in a parallel computer. We also propose a weighting scheme to guide the search process through the graph and we apply the concepts of parallel "branch and bound" algorithms in order to perform a "best-first" search using an information theoretic bound. The concept of "session" is used to speed up the search process in a succession of similar queries. Within a session, we strongly modify the bounds in a local database, while bounds kept in a global database are weakly modified to provide a better initial condition for other sessions. We also propose an implementation scheme based on a database machine using "semantic paging", and the "B-LOG processor" based on a scoreboard driven controller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We informally discuss several issues related to the parallel execution of logic programming systems and concurrent logic programming systems, and their generalization to constraint programming. We propose a new view of these systems, based on a particular definition of parallelism. We argüe that, under this view, a large number of the actual systems and models can be explained through the application, at different levéis of granularity, of only a few basic principies: determinism, non-failure, independence (also referred to as stability), granularity, etc. Also, and based on the convergence of concepts that this view brings, we sketch a model for the implementation of several parallel constraint logic programming source languages and models based on a common, generic abstract machine and an intermedíate kernel language.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the dimensional synthesis of a spherical Parallel Manipulator (PM) with a -1S kinematic chain is presented. The goal of the synthesis is to find a set of parameters that defines the PM with the best performance in terms of workspace capabilities, dexterity and isotropy. The PM is parametrized in terms of a reference element, and a non-directed search of these parameters is carried out. First, the inverse kinematics and instantaneous kinematics of the mechanism are presented. The latter is found using the screw theory formulation. An algorithm that explores a bounded set of parameters and determines the corresponding value of global indexes is presented. The concepts of a novel global performance index and a compound index are introduced. Simulation results are shown and discussed. The best PMs found in terms of each performance index evaluated are locally analyzed in terms of its workspace and local dexterity. The relationship between the performance of the PM and its parameters is discussed, and a prototype with the best performance in terms of the compound index is presented and analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the development of a new parallel robot designed for helping with bone milling surgeries. The robot is a small modular wrist with 2 active degrees of freedom, and it is proposed to be used as an orientation device located at the end of a robotic arm designed for bone milling processes. A generic kinematic geometry is proposed for this device. This first article shows the developments on the workspace optimization and the analysis of the force field required to complete a reconstruction of the inferior jawbone. The singularities of the mechanism are analyzed, and the actuator selection is justified with the torque requirements and the study of the force space. The results obtained by the simulations allow building a first prototype using linear motors. Bone milling experiment video is shown as additional material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work it is presented a complete kinematic analysis of the 3PSS-1S parallel mechanism for its implementation as a spherical wrist for a needle insertion guidance robot. The spherical 3PSS-1S mechanism is a low weight and reduced dimension parallel mechanism that allows spherical movements providing the requirements needed for the serial–parallel robotic arm for needle insertion guidance. The solution of its direct kinematic is computed with a numerical method based on the Newton–Raphson formulation and a constraint function of the mechanism. The input–output velocity equation is obtained with the use of screw theory. Three types of singular postures are identified during simulations and verified in the real prototype. The 3PSS-1S can perform pure rotations of ±45°±45°, ±40°±40°, ±60°±60° along the View the MathML sourcex, View the MathML sourcey, View the MathML sourcez axes respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays robots have made their way into real applications that were prohibitive and unthinkable thirty years ago. This is mainly due to the increase in power computations and the evolution in the theoretical field of robotics and control. Even though there is plenty of information in the current literature on this topics, it is not easy to find clear concepts of how to proceed in order to design and implement a controller for a robot. In general, the design of a controller requires of a complete understanding and knowledge of the system to be controlled. Therefore, for advanced control techniques the systems must be first identified. Once again this particular objective is cumbersome and is never straight forward requiring of great expertise and some criteria must be adopted. On the other hand, the particular problem of designing a controller is even more complex when dealing with Parallel Manipulators (PM), since their closed-loop structures give rise to a highly nonlinear system. Under this basis the current work is developed, which intends to resume and gather all the concepts and experiences involve for the control of an Hydraulic Parallel Manipulator. The main objective of this thesis is to provide a guide remarking all the steps involve in the designing of advanced control technique for PMs. The analysis of the PM under study is minced up to the core of the mechanism: the hydraulic actuators. The actuators are modeled and experimental identified. Additionally, some consideration regarding traditional PID controllers are presented and an adaptive controller is finally implemented. From a macro perspective the kinematic and dynamic model of the PM are presented. Based on the model of the system and extending the adaptive controller of the actuator, a control strategy for the PM is developed and its performance is analyzed with simulation.