13 resultados para panel data with spatial effects

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Commerce in rural territories should not be considered as a needed service, but as a basic infrastructure, that impact not only existent population, but also tourism, and rural industrialization. So, the rural areas need not only agriculture but industry and services, to have a global and balanced development, including for the countryside and the population. In the work presented in this paper, we are considering the formulation of the direct relation between population and the endowment of commerce sites within a geographical territory, the ?area of commercial interactions?. These are the closer set of towns that can gravitate to each other to cover the required needs for the populations within the area. The products retailed, range from basic products for the daily lives, to all other products for industry, agriculture, and services. The econometric spatial model developed to evaluate the interactions and estimate the parameters, is based on the Spatial Error Model, which allows for other spatial hidden effects to be considered without direct interference to the commercial disposition. The data and territory used to test the model correspond to a rural area in the Spanish Palencia territory (NUTS-3 level). The parameters have dependence from population levels, local rent per head, local and regional government budgets, and particular spatial restrictions. Interesting results are emerging form the model. The more significant is that the spatial effects can replace some number of commerce sites in towns, given the right spatial distribution of the sites and the towns. This is equivalent to consider the area of commercial interactions as the unit of measurement for the basic infrastructure and not only the towns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Improving the knowledge of demand evolution over time is a key aspect in the evaluation of transport policies and in forecasting future investment needs. It becomes even more critical for the case of toll roads, which in recent decades has become an increasingly common device to fund road projects. However, literature regarding demand elasticity estimates in toll roads is sparse and leaves some important aspects to be analyzed in greater detail. In particular, previous research on traffic analysis does not often disaggregate heavy vehicle demand from the total volume, so that the specific behavioral patternsof this traffic segment are not taken into account. Furthermore, GDP is the main socioeconomic variable most commonly chosen to explain road freight traffic growth over time. This paper seeks to determine the variables that better explain the evolution of heavy vehicle demand in toll roads over time. To that end, we present a dynamic panel data methodology aimed at identifying the key socioeconomic variables that explain the behavior of road freight traffic throughout the years. The results show that, despite the usual practice, GDP may not constitute a suitable explanatory variable for heavy vehicle demand. Rather, considering only the GDP of those sectors with a high impact on transport demand, such as construction or industry, leads to more consistent results. The methodology is applied to Spanish toll roads for the 1990?2011 period. This is an interesting case in the international context, as road freight demand has experienced an even greater reduction in Spain than elsewhere, since the beginning of the economic crisis in 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tolls have increasingly become a common mechanism to fund road projects in recent decades. Therefore, improving knowledge of demand behavior constitutes a key aspect for stakeholders dealing with the management of toll roads. However, the literature concerning demand elasticity estimates for interurban toll roads is still limited due to their relatively scarce number in the international context. Furthermore, existing research has left some aspects to be investigated, among others, the choice of GDP as the most common socioeconomic variable to explain traffic growth over time. This paper intends to determine the variables that better explain the evolution of light vehicle demand in toll roads throughout the years. To that end, we establish a dynamic panel data methodology aimed at identifying the key socioeconomic variables explaining changes in light vehicle demand over time. The results show that, despite some usefulness, GDP does not constitute the most appropriate explanatory variable, while other parameters such as employment or GDP per capita lead to more stable and consistent results. The methodology is applied to Spanish toll roads for the 1990?2011 period, which constitutes a very interesting case on variations in toll road use, as road demand has experienced a significant decrease since the beginning of the economic crisis in 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many diseases have a genetic origin, and a great effort is being made to detect the genes that are responsible for their insurgence. One of the most promising techniques is the analysis of genetic information through the use of complex networks theory. Yet, a practical problem of this approach is its computational cost, which scales as the square of the number of features included in the initial dataset. In this paper, we propose the use of an iterative feature selection strategy to identify reduced subsets of relevant features, and show an application to the analysis of congenital Obstructive Nephropathy. Results demonstrate that, besides achieving a drastic reduction of the computational cost, the topologies of the obtained networks still hold all the relevant information, and are thus able to fully characterize the severity of the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early weaning is a stressful event characterized by a transient period of intestinal atrophy that may be mediated by reduced secretion of glucagon-like peptide (GLP) 2. We tested whether enterally fed bile acids or plant sterols could increase nutrient-dependent GLP-2 secretion and improve intestinal adaptation in weanling pigs. During the first 6 d after weaning, piglets were intragastrically infused once daily with either deionized water -control-, chenodeoxycholic acid -CDC; 60mg/kg body weight-, or b-sitoesterol -BSE; 100 mg/kg body weight-. Infusing CDC increased plasma GLP-2 -P menor que 0.05- but did not affect plasma GLP-1 and feed intake. The intestinal expression of Glp2r -glucagon-like peptide 2 receptor-, Asbt -sodium-dependent bile acid transporter-, Fxr -farnesoid X receptor-, and Tgr5 -guanosine protein?coupled bile acid receptor- genes were not affected by CDC treatment. The intragastric administration of CDC did not alter the weight and length of the intestine, yet increased the activation of caspase-3 in ileal villi -P menor que 0.02- and the expression of Il6 -interleukin 6; P menor que 0.002- in the jejunum. In contrast, infusing BSE did not affect any of the variables that were measured. Our results show that the enteral administration of the bile acid CDC potentiates the nutrient-induced secretion of endogenous GLP-2 in early-weaned pigs. Bile acid?enhanced release of GLP-2, however, did not result in improved intestinal growth, morphology, or inflammation during the postweaning degenerative phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El estudio desarrollado en este trabajo de tesis se centra en la modelización numérica de la fase de propagación de los deslizamientos rápidos de ladera a través del método sin malla Smoothed Particle Hydrodynamics (SPH). Este método tiene la gran ventaja de permitir el análisis de problemas de grandes deformaciones evitando operaciones costosas de remallado como en el caso de métodos numéricos con mallas tal como el método de los Elementos Finitos. En esta tesis, particular atención viene dada al rol que la reología y la presión de poros desempeñan durante estos eventos. El modelo matemático utilizado se basa en la formulación de Biot-Zienkiewicz v - pw, que representa el comportamiento, expresado en términos de velocidad del esqueleto sólido y presiones de poros, de la mezcla de partículas sólidas en un medio saturado. Las ecuaciones que gobiernan el problema son: • la ecuación de balance de masa de la fase del fluido intersticial, • la ecuación de balance de momento de la fase del fluido intersticial y de la mezcla, • la ecuación constitutiva y • una ecuación cinemática. Debido a sus propiedades geométricas, los deslizamientos de ladera se caracterizan por tener una profundidad muy pequeña frente a su longitud y a su anchura, y, consecuentemente, el modelo matemático mencionado anteriormente se puede simplificar integrando en profundidad las ecuaciones, pasando de un modelo 3D a 2D, el cual presenta una combinación excelente de precisión, sencillez y costes computacionales. El modelo propuesto en este trabajo se diferencia de los modelos integrados en profundidad existentes por incorporar un ulterior modelo capaz de proveer información sobre la presión del fluido intersticial a cada paso computacional de la propagación del deslizamiento. En una manera muy eficaz, la evolución de los perfiles de la presión de poros está numéricamente resuelta a través de un esquema explicito de Diferencias Finitas a cada nodo SPH. Este nuevo enfoque es capaz de tener en cuenta la variación de presión de poros debida a cambios de altura, de consolidación vertical o de cambios en las tensiones totales. Con respecto al comportamiento constitutivo, uno de los problemas principales al modelizar numéricamente deslizamientos rápidos de ladera está en la dificultad de simular con la misma ley constitutiva o reológica la transición de la fase de iniciación, donde el material se comporta como un sólido, a la fase de propagación donde el material se comporta como un fluido. En este trabajo de tesis, se propone un nuevo modelo reológico basado en el modelo viscoplástico de Perzyna, pensando a la viscoplasticidad como a la llave para poder simular tanto la fase de iniciación como la de propagación con el mismo modelo constitutivo. Con el fin de validar el modelo matemático y numérico se reproducen tanto ejemplos de referencia con solución analítica como experimentos de laboratorio. Finalmente, el modelo se aplica a casos reales, con especial atención al caso del deslizamiento de 1966 en Aberfan, mostrando como los resultados obtenidos simulan con éxito estos tipos de riesgos naturales. The study developed in this thesis focuses on the modelling of landslides propagation with the Smoothed Particle Hydrodynamics (SPH) meshless method which has the great advantage of allowing to deal with large deformation problems by avoiding expensive remeshing operations as happens for mesh methods such as, for example, the Finite Element Method. In this thesis, special attention is given to the role played by rheology and pore water pressure during these natural hazards. The mathematical framework used is based on the v - pw Biot-Zienkiewicz formulation, which represents the behaviour, formulated in terms of soil skeleton velocity and pore water pressure, of the mixture of solid particles and pore water in a saturated media. The governing equations are: • the mass balance equation for the pore water phase, • the momentum balance equation for the pore water phase and the mixture, • the constitutive equation and • a kinematic equation. Landslides, due to their shape and geometrical properties, have small depths in comparison with their length or width, therefore, the mathematical model aforementioned can then be simplified by depth integrating the equations, switching from a 3D to a 2D model, which presents an excellent combination of accuracy, computational costs and simplicity. The proposed model differs from previous depth integrated models by including a sub-model able to provide information on pore water pressure profiles at each computational step of the landslide's propagation. In an effective way, the evolution of the pore water pressure profiles is numerically solved through a set of 1D Finite Differences explicit scheme at each SPH node. This new approach is able to take into account the variation of the pore water pressure due to changes of height, vertical consolidation or changes of total stress. Concerning the constitutive behaviour, one of the main issues when modelling fast landslides is the difficulty to simulate with the same constitutive or rheological model the transition from the triggering phase, where the landslide behaves like a solid, to the propagation phase, where the landslide behaves in a fluid-like manner. In this work thesis, a new rheological model is proposed, based on the Perzyna viscoplastic model, thinking of viscoplasticity as the key to close the gap between the triggering and the propagation phase. In order to validate the mathematical model and the numerical approach, benchmarks and laboratory experiments are reproduced and compared to analytical solutions when possible. Finally, applications to real cases are studied, with particular attention paid to the Aberfan flowslide of 1966, showing how the mathematical model accurately and successfully simulate these kind of natural hazards.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: One of the main challenges for biomedical research lies in the computer-assisted integrative study of large and increasingly complex combinations of data in order to understand molecular mechanisms. The preservation of the materials and methods of such computational experiments with clear annotations is essential for understanding an experiment, and this is increasingly recognized in the bioinformatics community. Our assumption is that offering means of digital, structured aggregation and annotation of the objects of an experiment will provide necessary meta-data for a scientist to understand and recreate the results of an experiment. To support this we explored a model for the semantic description of a workflow-centric Research Object (RO), where an RO is defined as a resource that aggregates other resources, e.g., datasets, software, spreadsheets, text, etc. We applied this model to a case study where we analysed human metabolite variation by workflows. Results: We present the application of the workflow-centric RO model for our bioinformatics case study. Three workflows were produced following recently defined Best Practices for workflow design. By modelling the experiment as an RO, we were able to automatically query the experiment and answer questions such as “which particular data was input to a particular workflow to test a particular hypothesis?”, and “which particular conclusions were drawn from a particular workflow?”. Conclusions: Applying a workflow-centric RO model to aggregate and annotate the resources used in a bioinformatics experiment, allowed us to retrieve the conclusions of the experiment in the context of the driving hypothesis, the executed workflows and their input data. The RO model is an extendable reference model that can be used by other systems as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Una gestión más eficiente y equitativa del agua a escala de cuenca no se puede centrar exclusivamente en el recurso hídrico en sí, sino también en otras políticas y disciplinas científicas. Existe un consenso creciente de que, además de la consideración de las cambiantes condiciones climáticas, es necesaria una integración de ámbitos de investigación tales como la agronomía, planificación del territorio y ciencias políticas y económicas a fin de satisfacer de manera sostenible las demandas de agua por parte de la sociedad y del medio natural. La Política Agrícola Común (PAC) es el principal motor de cambio en las tendencias de paisajes rurales y sistemas agrícolas, pero el deterioro del medio ambiente es ahora una de las principales preocupaciones. Uno de los cambios más relevantes se ha producido con la expansión e intensificación del olivar en España, principalmente con nuevas zonas de regadío o la conversión de olivares de secano a sistemas en regadío. Por otra parte, el cambio de las condiciones climáticas podría ejercer un papel importante en las tendencias negativas de las aportaciones a los ríos, pero no queda claro el papel que podrían estar jugando los cambios de uso de suelo y cobertura vegetal sobre las tendencias negativas de caudal observadas. Esta tesis tiene como objetivo mejorar el conocimiento de los efectos de la producción agrícola, política agraria y cambios de uso de suelo y cobertura vegetal sobre las condiciones de calidad del agua, respuesta hidrológica y apropiación del agua por parte de la sociedad. En primer lugar, el estudio determina las tendencias existentes de nitratos y sólidos en suspensión en las aguas superficiales de la cuenca del río Guadalquivir durante el periodo de 1998 a 2009. Desde una perspectiva de política agraria, la investigación trata de evaluar mediante un análisis de datos de panel las principales variables, incluyendo la reforma de la PAC de 2003, que están teniendo una influencia en ambos indicadores de calidad. En segundo lugar, la apropiación del agua y el nivel de contaminación por nitratos debido a la producción del aceite de oliva en España se determinan con una evaluación de la huella hídrica (HH), teniendo en cuenta una variabilidad espacial y temporal a largo de las provincias españolas y entre 1997 y 2008. Por último, la tesis analiza los efectos de los cambios de uso de suelo y cobertura vegetal sobre las tendencias negativas observadas en la zona alta del Turia, cabecera de la cuenca del río Júcar, durante el periodo 1973-2008 mediante una modelización ecohidrológica. En la cuenca del Guadalquivir cerca del 20% de las estaciones de monitoreo muestran tendencias significativas, lineales o cuadráticas, para cada indicador de calidad de agua. La mayoría de las tendencias significativas en nitratos están aumentando, y la mayoría de tendencias cuadráticas muestran un patrón en forma de U. Los modelos de regresión de datos de panel muestran que las variables más importantes que empeoran ambos indicadores de calidad del agua son la intensificación de biomasa y las exportaciones de ambos indicadores de calidad procedentes de aguas arriba. En regiones en las que el abandono agrícola y/o desintensificación han tenido lugar han mejorado las condiciones de calidad del agua. Para los nitratos, el desacoplamiento de las subvenciones a la agricultura y la reducción de la cuantía de las subvenciones a tierras de regadío subyacen en la reducción observada de la concentración de nitratos. Las medidas de modernización de regadíos y el establecimiento de zonas vulnerables a nitratos reducen la concentración en subcuencas que muestran una tendencia creciente de nitratos. Sin embargo, el efecto de las exportaciones de nitratos procedente de aguas arriba, la intensificación de la biomasa y los precios de los cultivos presentan un mayor peso, explicando la tendencia creciente observada de nitratos. Para los sólidos en suspensión, no queda de forma evidente si el proceso de desacoplamiento ha influido negativa o positivamente. Sin embargo, los mayores valores de las ayudas agrarias aún ligadas a la producción, en particular en zonas de regadío, conllevan un aumento de las tasas de erosión. Aunque la cuenca del Guadalquivir ha aumentado la producción agrícola y la eficiencia del uso del agua, el problema de las altas tasas de erosión aún no ha sido mitigado adecuadamente. El estudio de la huella hídrica (HH) revela que en 1 L de aceite de oliva español más del 99,5% de la HH está relacionado con la producción de la aceituna, mientras que menos del 0,5% se debe a otros componentes, es decir, a la botella, tapón y etiqueta. Durante el período estudiado, la HH verde en secano y en regadío representa alrededor del 72% y 12%, respectivamente, del total de la HH. Las HHs azul y gris representan 6% y 10%, respectivamente. La producción de aceitunas se concentra en regiones con una HH menor por unidad de producto. La producción de aceite de oliva ha aumentado su productividad del agua durante 1997-2008, incentivado por los crecientes precios del aceite, como también lo ha hecho la cantidad de exportaciones de agua virtual. De hecho, las mayores zonas productoras presentan una eficiencia alta del uso y de productividad del agua, así como un menor potencial de contaminación por nitratos. Pero en estas zonas se ve a la vez reflejado un aumento de presión sobre los recursos hídricos locales. El aumento de extracciones de agua subterránea relacionadas con las exportaciones de aceite de oliva podría añadir una mayor presión a la ya estresada cuenca del Guadalquivir, mostrando la necesidad de equilibrar las fuerzas del mercado con los recursos locales disponibles. Los cambios de uso de suelo y cobertura vegetal juegan un papel importante en el balance del agua de la cuenca alta del Turia, pero no son el principal motor que sustenta la reducción observada de caudal. El aumento de la temperatura es el principal factor que explica las mayores tasas de evapotranspiración y la reducción de caudales. Sin embargo, los cambios de uso de suelo y el cambio climático han tenido un efecto compensatorio en la respuesta hidrológica. Por un lado, el caudal se ha visto afectado negativamente por el aumento de la temperatura, mientras que los cambios de uso de suelo y cobertura vegetal han compensado positivamente con una reducción de las tasas de evapotranspiración, gracias a los procesos de disminución de la densidad de matorral y de degradación forestal. El estudio proporciona una visión que fortalece la interdisciplinariedad entre la planificación hidrológica y territorial, destacando la necesidad de incluir las implicaciones de los cambios de uso de suelo y cobertura vegetal en futuros planes hidrológicos. Estos hallazgos son valiosos para la gestión de la cuenca del río Turia, y el enfoque empleado es útil para la determinación del peso de los cambios de uso de suelo y cobertura vegetal en la respuesta hidrológica en otras regiones. ABSTRACT Achieving a more efficient and equitable water management at catchment scale does not only rely on the water resource itself, but also on other policies and scientific knowledge. There is a growing consensus that, in addition to consideration of changing climate conditions, integration with research areas such as agronomy, land use planning and economics and political science is required to meet sustainably the societal and environmental water demands. The Common Agricultural Policy (CAP) is a main driver for trends in rural landscapes and agricultural systems, but environmental deterioration is now a principal concern. One of the most relevant changes has occurred with the expansion and intensification of olive orchards in Spain, taking place mainly with new irrigated areas or with the conversion from rainfed to irrigated systems. Moreover, changing climate conditions might exert a major role on water yield trends, but it remains unclear the role that ongoing land use and land cover changes (LULCC) might have on observed river flow trends. This thesis aims to improve the understanding of the effects of agricultural production, policies and LULCC on water quality conditions, hydrological response and human water appropriation. Firstly, the study determines the existing trends for nitrates and suspended solids in the Guadalquivir river basin’s surface waters (south Spain) during the period from 1998 to 2009. From a policy perspective, the research tries to assess with panel data analysis the main drivers, including the 2003 CAP reform, which are having an influence on both water quality indicators. Secondly, water appropriation and nitrate pollution level originating from the production of olive oil in Spain is determined with a water footprint (WF) assessment, considering a spatial temporal variability across the Spanish provinces and from 1997 to 2008 years. Finally, the thesis analyzes the effects of the LULCC on the observed negative trends over the period 1973-2008 in the Upper Turia basin, headwaters of the Júcar river demarcation (east Spain), with ecohydrological modeling. In the Guadalquivir river basin about 20% of monitoring stations show significant trends, linear or quadratic, for each water quality indicator. Most significant trends of nitrates are augmenting than decreasing, and most significant quadratic terms of both indicators exhibit U-shaped patterns. The panel data models show that the most important drivers that are worsening nitrates and suspended solids in the basin are biomass intensification and exports of both water quality indicators from upland regions. In regions that agricultural abandonment and/or de-intensification have taken place the water quality conditions have improved. For nitrates, the decoupling of agricultural subsidies and the reduction of the amount of subsidies to irrigated land underlie the observed reduction of nitrates concentration. Measures of irrigation modernization and establishment of vulnerable zones to nitrates ameliorate the concentration of nitrates in subbasins showing an increasing trend. However, the effect of nitrates load from upland areas, intensification of biomass and crop prices present a greater weight leading to the final increasing trend in this subbasins group, where annual crops dominate. For suspended solids, there is no clear evidence that decoupling process have influenced negatively or positively. Nevertheless, greater values of subsidies still linked to production, particularly in irrigated regions, lead to increasing erosion rates. Although agricultural production has augmented in the basin and water efficiency in the agricultural sector has improved, the issue of high erosion rates has not yet been properly faced. The water footprint (WF) assessment reveals that for 1 L Spanish olive oil more than 99.5% of the WF is related to the olive fruit production, whereas less than 0.5% is due to other components i.e. bottle, cap and label. Over the studied period, the green WF in rainfed and irrigated systems represents about 72% and 12%, respectively, of the total WF. Blue and grey WFs represent 6% and 10%, respectively. The olive production is concentrated in regions with the smallest WF per unit of product. The olive oil production has increased its apparent water productivity from 1997 to 2008 incentivized by growing trade prices, but also did the amount of virtual water exports. In fact, the largest producing areas present high water use efficiency per product and apparent water productivity as well as less nitrates pollution potential, but this enhances the pressure on the available water resources. Increasing groundwater abstractions related to olive oil exports may add further pressure to the already stressed Guadalquivir basin. This shows the need to balance the market forces with the available local resources. Concerning the effects of LULCC on the Upper Turia basin’s streamflow, LULCC play a significant role on the water balance, but it is not the main driver underpinning the observed reduction on Turia's streamflow. Increasing mean temperature is the main factor supporting larger evapotranspiration rates and streamflow reduction. In fact, LULCC and climate change have had an offsetting effect on the streamflow generation during the study period. While streamflow has been negatively affected by increasing temperature, ongoing LULCC have positively compensated with reduced evapotranspiration rates, thanks to mainly shrubland clearing and forest degradation processes. The research provides insight for strengthening the interdisciplinarity between hydrological and spatial planning, highlighting the need to include the implications of LULCC in future hydrological plans. These findings are valuable for the management of the Turia river basin, as well as a useful approach for the determination of the weight of LULCC on the hydrological response in other regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pesar de los importantes avances en la reducción del hambre, la seguridad alimentaria continúa siendo un reto de dimensión internacional. La seguridad alimentaria es un concepto amplio y multidimensional, cuyo análisis abarca distintas escalas y horizontes temporales. Dada su complejidad, la identificación de las causas de la inseguridad alimentaria y la priorización de las medias para abordarlas, son dos cuestiones que suscitan un intenso debate en la actualidad. El objetivo de esta tesis es evaluar el impacto de la globalización y el crecimiento económico en la seguridad alimentaria en los países en desarrollo, desde una perspectiva macro y un horizonte temporal a largo plazo. La influencia de la globalización se aborda de una manera secuencial. En primer lugar, se analiza la relación entre la inversión público-privada en infraestructuras y las exportaciones agrarias. A continuación, se estudia el impacto de las exportaciones agrarias en los indicadores de seguridad alimentaria. El estudio del impacto del crecimiento económico aborda los cambios paralelos en la distribución de la renta, y cómo la inequidad influye en el comportamiento de la seguridad alimentaria nacional. Además, se analiza en qué medida el crecimiento económico contribuye a acelerar el proceso de mejora de la seguridad alimentaria. Con el fin de conseguir los objetivos mencionados, se llevan a cabo varios análisis econométricos basados en datos de panel, en el que se combinan datos de corte transversal de 52 países y datos temporales comprendidos en el periodo 1991-2012. Se analizan tanto variables en niveles como variables en tasas de cambio anual. Se aplican los modelos de estimación de efectos variables y efectos fijos, ambos en niveles y en primeras diferencias. La tesis incluye cuatro tipos de modelos econométricos, cada uno de ellos con sus correspondientes pruebas de robustez y especificaciones. Los resultados matizan la importancia de la globalización y el crecimiento económico como mecanismos de mejora de la seguridad alimentaria en los países en desarrollo. Se obtienen dos conclusiones relativas a la globalización. En primer lugar, los resultados sugieren que la promoción de las inversiones privadas en infraestructuras contribuye a aumentar las exportaciones agrarias. En segundo lugar, se observa que las exportaciones agrarias pueden tener un impacto negativo en los indicadores de seguridad alimentaria. La combinación de estas dos conclusiones sugiere que la apertura comercial y financiera no contribuye por sí misma a la mejora de la seguridad alimentaria en los países en desarrollo. La apertura internacional de los países en desarrollo ha de ir acompañada de políticas e inversiones que desarrollen sectores productivos de alto valor añadido, que fortalezcan la economía nacional y reduzcan su dependencia exterior. En relación al crecimiento económico, a pesar del incuestionable hecho de que el crecimiento económico es una condición necesaria para reducir los niveles de subnutrición, no es una condición suficiente. Se han identificado tres estrategias adicionales que han de acompañar al crecimiento económico con el fin de intensificar su impacto positivo sobre la subnutrición. Primero, es necesario que el crecimiento económico sea acompañado de una distribución más equitativa de los ingresos. Segundo, el crecimiento económico ha de reflejarse en un aumento de inversiones en salud, agua y saneamiento y educación. Se observa que, incluso en ausencia de crecimiento económico, mejoras en el acceso a agua potable contribuyen a reducir los niveles de población subnutrida. Tercero, el crecimiento económico sostenible en el largo plazo parece tener un mayor impacto positivo sobre la seguridad alimentaria que el crecimiento económico más volátil o inestable en el corto plazo. La estabilidad macroeconómica se identifica como una condición necesaria para alcanzar una mayor mejora en la seguridad alimentaria, incluso habiéndose mejorado la equidad en la distribución de los ingresos. Por último, la tesis encuentra que los países en desarrollo analizados han experimentado diferentes trayectorias no lineales en su proceso de mejora de sus niveles de subnutrición. Los resultados sugieren que un mayor nivel inicial de subnutrición y el crecimiento económico son responsables de una respuesta más rápida al reto de la mejora de la seguridad alimentaria. ABSTRACT Despite the significant reductions of hunger, food security still remains a global challenge. Food security is a wide concept that embraces multiple dimensions, and has spatial-temporal scales. Because of its complexity, the identification of the drivers underpinning food insecurity and the prioritization of measures to address them are a subject of intensive debate. This thesis attempts to assess the impact of globalization and economic growth on food security in developing countries with a macro level scale (country) and using a long-term approach. The influence of globalization is addressed in a sequential way. First, the impact of public-private investment in infrastructure on agricultural exports in developing countries is analyzed. Secondly, an assessment is conducted to determine the impact of agricultural exports on food security indicators. The impact of economic growth focuses on the parallel changes in income inequality and how the income distribution influences countries' food security performance. Furthermore, the thesis analyzes to what extent economic growth helps accelerating food security improvements. To address the above mentioned goals, various econometric models are formulated. Models use panel data procedures combining cross-sectional data of 52 countries and time series data from 1991 to 2012. Yearly data are expressed both in levels and in changes. The estimation models applied are random effects estimation and fixed effects estimations, both in levels and in first differences. The thesis includes four families of econometric models, each with its own set of robustness checks and specifications. The results qualify the relevance of globalization and economic growth as enabling mechanisms for improving food security in developing countries. Concerning globalization, two main conclusions can be drawn. First, results showed that enhancing foreign private investment in infrastructures contributes to increase agricultural exports. Second, agricultural exports appear to have a negative impact on national food security indicators. These two conclusions suggest that trade and financial openness per se do not contribute directly to improve food security in development countries. Both measures should be accompanied by investments and policies to support the development of national high value productive sectors, to strengthen the domestic economy and reduce its external dependency. Referring to economic growth, despite the unquestionable fact that income growth is a pre-requisite for reducing undernourishment, results suggest that it is a necessary but not a sufficient condition. Three additional strategies should accompany economic growth to intensifying its impact on food security. Firstly, it is necessary that income growth should be accompanied by a better distribution of income. Secondly, income growth needs to be followed by investments and policies in health, sanitation and education to improve food security. Even if economic growth falters, sustained improvements in the access to drinking water may still give rise to reductions in the percentage of undernourished people. And thirdly, long-term economic growth appears to have a greater impact on reducing hunger than growth regimes that combine periods of growth peaks followed by troughs. Macroeconomic stability is a necessary condition for accelerating food security. Finally, the thesis finds that the developing countries analyzed have experienced different non-linear paths toward improving food security. Results also show that a higher initial level of undernourishment and economic growth result in a faster response for improving food security.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La presente Tesis constituye un avance en el conocimiento de los efectos de la variabilidad climática en los cultivos en la Península Ibérica (PI). Es bien conocido que la temperatura del océano, particularmente de la región tropical, es una de las variables más convenientes para ser utilizado como predictor climático. Los océanos son considerados como la principal fuente de almacenamiento de calor del planeta debido a la alta capacidad calorífica del agua. Cuando se libera esta energía, altera los regímenes globales de circulación atmosférica por mecanismos de teleconexión. Estos cambios en la circulación general de la atmósfera afectan a la temperatura, precipitación, humedad, viento, etc., a escala regional, los cuales afectan al crecimiento, desarrollo y rendimiento de los cultivos. Para el caso de Europa, esto implica que la variabilidad atmosférica en una región específica se asocia con la variabilidad de otras regiones adyacentes y/o remotas, como consecuencia Europa está siendo afectada por los patrones de circulaciones globales, que a su vez, se ven afectados por patrones oceánicos. El objetivo general de esta tesis es analizar la variabilidad del rendimiento de los cultivos y su relación con la variabilidad climática y teleconexiones, así como evaluar su predictibilidad. Además, esta Tesis tiene como objetivo establecer una metodología para estudiar la predictibilidad de las anomalías del rendimiento de los cultivos. El análisis se centra en trigo y maíz como referencia para otros cultivos de la PI, cultivos de invierno en secano y cultivos de verano en regadío respectivamente. Experimentos de simulación de cultivos utilizando una metodología en cadena de modelos (clima + cultivos) son diseñados para evaluar los impactos de los patrones de variabilidad climática en el rendimiento y su predictibilidad. La presente Tesis se estructura en dos partes: La primera se centra en el análisis de la variabilidad del clima y la segunda es una aplicación de predicción cuantitativa de cosechas. La primera parte está dividida en 3 capítulos y la segundo en un capitulo cubriendo los objetivos específicos del presente trabajo de investigación. Parte I. Análisis de variabilidad climática El primer capítulo muestra un análisis de la variabilidad del rendimiento potencial en una localidad como indicador bioclimático de las teleconexiones de El Niño con Europa, mostrando su importancia en la mejora de predictibilidad tanto en clima como en agricultura. Además, se presenta la metodología elegida para relacionar el rendimiento con las variables atmosféricas y oceánicas. El rendimiento de los cultivos es parcialmente determinado por la variabilidad climática atmosférica, que a su vez depende de los cambios en la temperatura de la superficie del mar (TSM). El Niño es el principal modo de variabilidad interanual de la TSM, y sus efectos se extienden en todo el mundo. Sin embargo, la predictibilidad de estos impactos es controversial, especialmente aquellos asociados con la variabilidad climática Europea, que se ha encontrado que es no estacionaria y no lineal. Este estudio mostró cómo el rendimiento potencial de los cultivos obtenidos a partir de datos de reanálisis y modelos de cultivos sirve como un índice alternativo y más eficaz de las teleconexiones de El Niño, ya que integra las no linealidades entre las variables climáticas en una única serie temporal. Las relaciones entre El Niño y las anomalías de rendimiento de los cultivos son más significativas que las contribuciones individuales de cada una de las variables atmosféricas utilizadas como entrada en el modelo de cultivo. Además, la no estacionariedad entre El Niño y la variabilidad climática europea se detectan con mayor claridad cuando se analiza la variabilidad de los rendimiento de los cultivos. La comprensión de esta relación permite una cierta predictibilidad hasta un año antes de la cosecha del cultivo. Esta predictibilidad no es constante, sino que depende tanto la modulación de la alta y baja frecuencia. En el segundo capítulo se identifica los patrones oceánicos y atmosféricos de variabilidad climática que afectan a los cultivos de verano en la PI. Además, se presentan hipótesis acerca del mecanismo eco-fisiológico a través del cual el cultivo responde. Este estudio se centra en el análisis de la variabilidad del rendimiento de maíz en la PI para todo el siglo veinte, usando un modelo de cultivo calibrado en 5 localidades españolas y datos climáticos de reanálisis para obtener series temporales largas de rendimiento potencial. Este estudio evalúa el uso de datos de reanálisis para obtener series de rendimiento de cultivos que dependen solo del clima, y utilizar estos rendimientos para analizar la influencia de los patrones oceánicos y atmosféricos. Los resultados muestran una gran fiabilidad de los datos de reanálisis. La distribución espacial asociada a la primera componente principal de la variabilidad del rendimiento muestra un comportamiento similar en todos los lugares estudiados de la PI. Se observa una alta correlación lineal entre el índice de El Niño y el rendimiento, pero no es estacionaria en el tiempo. Sin embargo, la relación entre la temperatura del aire y el rendimiento se mantiene constante a lo largo del tiempo, siendo los meses de mayor influencia durante el período de llenado del grano. En cuanto a los patrones atmosféricos, el patrón Escandinavia presentó una influencia significativa en el rendimiento en PI. En el tercer capítulo se identifica los patrones oceánicos y atmosféricos de variabilidad climática que afectan a los cultivos de invierno en la PI. Además, se presentan hipótesis acerca del mecanismo eco-fisiológico a través del cual el cultivo responde. Este estudio se centra en el análisis de la variabilidad del rendimiento de trigo en secano del Noreste (NE) de la PI. La variabilidad climática es el principal motor de los cambios en el crecimiento, desarrollo y rendimiento de los cultivos, especialmente en los sistemas de producción en secano. En la PI, los rendimientos de trigo son fuertemente dependientes de la cantidad de precipitación estacional y la distribución temporal de las mismas durante el periodo de crecimiento del cultivo. La principal fuente de variabilidad interanual de la precipitación en la PI es la Oscilación del Atlántico Norte (NAO), que se ha relacionado, en parte, con los cambios en la temperatura de la superficie del mar en el Pacífico Tropical (El Niño) y el Atlántico Tropical (TNA). La existencia de cierta predictibilidad nos ha animado a analizar la posible predicción de los rendimientos de trigo en la PI utilizando anomalías de TSM como predictor. Para ello, se ha utilizado un modelo de cultivo (calibrado en dos localidades del NE de la PI) y datos climáticos de reanálisis para obtener series temporales largas de rendimiento de trigo alcanzable y relacionar su variabilidad con anomalías de la TSM. Los resultados muestran que El Niño y la TNA influyen en el desarrollo y rendimiento del trigo en el NE de la PI, y estos impactos depende del estado concurrente de la NAO. Aunque la relación cultivo-TSM no es igual durante todo el periodo analizado, se puede explicar por un mecanismo eco-fisiológico estacionario. Durante la segunda mitad del siglo veinte, el calentamiento (enfriamiento) en la superficie del Atlántico tropical se asocia a una fase negativa (positiva) de la NAO, que ejerce una influencia positiva (negativa) en la temperatura mínima y precipitación durante el invierno y, por lo tanto, aumenta (disminuye) el rendimiento de trigo en la PI. En relación con El Niño, la correlación más alta se observó en el período 1981 -2001. En estas décadas, los altos (bajos) rendimientos se asocian con una transición El Niño - La Niña (La Niña - El Niño) o con eventos de El Niño (La Niña) que están finalizando. Para estos eventos, el patrón atmosférica asociada se asemeja a la NAO, que también influye directamente en la temperatura máxima y precipitación experimentadas por el cultivo durante la floración y llenado de grano. Los co- efectos de los dos patrones de teleconexión oceánicos ayudan a aumentar (disminuir) la precipitación y a disminuir (aumentar) la temperatura máxima en PI, por lo tanto el rendimiento de trigo aumenta (disminuye). Parte II. Predicción de cultivos. En el último capítulo se analiza los beneficios potenciales del uso de predicciones climáticas estacionales (por ejemplo de precipitación) en las predicciones de rendimientos de trigo y maíz, y explora métodos para aplicar dichos pronósticos climáticos en modelos de cultivo. Las predicciones climáticas estacionales tienen un gran potencial en las predicciones de cultivos, contribuyendo de esta manera a una mayor eficiencia de la gestión agrícola, seguridad alimentaria y de subsistencia. Los pronósticos climáticos se expresan en diferentes formas, sin embargo todos ellos son probabilísticos. Para ello, se evalúan y aplican dos métodos para desagregar las predicciones climáticas estacionales en datos diarios: 1) un generador climático estocástico condicionado (predictWTD) y 2) un simple re-muestreador basado en las probabilidades del pronóstico (FResampler1). Los dos métodos se evaluaron en un caso de estudio en el que se analizaron los impactos de tres escenarios de predicciones de precipitación estacional (predicción seco, medio y lluvioso) en el rendimiento de trigo en secano, sobre las necesidades de riego y rendimiento de maíz en la PI. Además, se estimó el margen bruto y los riesgos de la producción asociada con las predicciones de precipitación estacional extremas (seca y lluviosa). Los métodos predWTD y FResampler1 usados para desagregar los pronósticos de precipitación estacional en datos diarios, que serán usados como inputs en los modelos de cultivos, proporcionan una predicción comparable. Por lo tanto, ambos métodos parecen opciones factibles/viables para la vinculación de los pronósticos estacionales con modelos de simulación de cultivos para establecer predicciones de rendimiento o las necesidades de riego en el caso de maíz. El análisis del impacto en el margen bruto de los precios del grano de los dos cultivos (trigo y maíz) y el coste de riego (maíz) sugieren que la combinación de los precios de mercado previstos y la predicción climática estacional pueden ser una buena herramienta en la toma de decisiones de los agricultores, especialmente en predicciones secas y/o localidades con baja precipitación anual. Estos métodos permiten cuantificar los beneficios y riesgos de los agricultores ante una predicción climática estacional en la PI. Por lo tanto, seríamos capaces de establecer sistemas de alerta temprana y diseñar estrategias de adaptación del manejo del cultivo para aprovechar las condiciones favorables o reducir los efectos de condiciones adversas. La utilidad potencial de esta Tesis es la aplicación de las relaciones encontradas para predicción de cosechas de la próxima campaña agrícola. Una correcta predicción de los rendimientos podría ayudar a los agricultores a planear con antelación sus prácticas agronómicas y todos los demás aspectos relacionados con el manejo de los cultivos. Esta metodología se puede utilizar también para la predicción de las tendencias futuras de la variabilidad del rendimiento en la PI. Tanto los sectores públicos (mejora de la planificación agrícola) como privados (agricultores, compañías de seguros agrarios) pueden beneficiarse de esta mejora en la predicción de cosechas. ABSTRACT The present thesis constitutes a step forward in advancing of knowledge of the effects of climate variability on crops in the Iberian Peninsula (IP). It is well known that ocean temperature, particularly the tropical ocean, is one of the most convenient variables to be used as climate predictor. Oceans are considered as the principal heat storage of the planet due to the high heat capacity of water. When this energy is released, it alters the global atmospheric circulation regimes by teleconnection1 mechanisms. These changes in the general circulation of the atmosphere affect the regional temperature, precipitation, moisture, wind, etc., and those influence crop growth, development and yield. For the case of Europe, this implies that the atmospheric variability in a specific region is associated with the variability of others adjacent and/or remote regions as a consequence of Europe being affected by global circulations patterns which, in turn, are affected by oceanic patterns. The general objective of this Thesis is to analyze the variability of crop yields at climate time scales and its relation to the climate variability and teleconnections, as well as to evaluate their predictability. Moreover, this Thesis aims to establish a methodology to study the predictability of crop yield anomalies. The analysis focuses on wheat and maize as a reference crops for other field crops in the IP, for winter rainfed crops and summer irrigated crops respectively. Crop simulation experiments using a model chain methodology (climate + crop) are designed to evaluate the impacts of climate variability patterns on yield and its predictability. The present Thesis is structured in two parts. The first part is focused on the climate variability analyses, and the second part is an application of the quantitative crop forecasting for years that fulfill specific conditions identified in the first part. This Thesis is divided into 4 chapters, covering the specific objectives of the present research work. Part I. Climate variability analyses The first chapter shows an analysis of potential yield variability in one location, as a bioclimatic indicator of the El Niño teleconnections with Europe, putting forward its importance for improving predictability in both climate and agriculture. It also presents the chosen methodology to relate yield with atmospheric and oceanic variables. Crop yield is partially determined by atmospheric climate variability, which in turn depends on changes in the sea surface temperature (SST). El Niño is the leading mode of SST interannual variability, and its impacts extend worldwide. Nevertheless, the predictability of these impacts is controversial, especially those associated with European climate variability, which have been found to be non-stationary and non-linear. The study showed how potential2 crop yield obtained from reanalysis data and crop models serves as an alternative and more effective index of El Niño teleconnections because it integrates the nonlinearities between the climate variables in a unique time series. The relationships between El Niño and crop yield anomalies are more significant than the individual contributions of each of the atmospheric variables used as input in the crop model. Additionally, the non-stationarities between El Niño and European climate variability are more clearly detected when analyzing crop-yield variability. The understanding of this relationship allows for some predictability up to one year before the crop is harvested. This predictability is not constant, but depends on both high and low frequency modulation. The second chapter identifies the oceanic and atmospheric patterns of climate variability affecting summer cropping systems in the IP. Moreover, hypotheses about the eco-physiological mechanism behind crop response are presented. It is focused on an analysis of maize yield variability in IP for the whole twenty century, using a calibrated crop model at five contrasting Spanish locations and reanalyses climate datasets to obtain long time series of potential yield. The study tests the use of reanalysis data for obtaining only climate dependent time series of simulated crop yield for the whole region, and to use these yield to analyze the influences of oceanic and atmospheric patterns. The results show a good reliability of reanalysis data. The spatial distribution of the leading principal component of yield variability shows a similar behaviour over all the studied locations in the IP. The strong linear correlation between El Niño index and yield is remarkable, being this relation non-stationary on time, although the air temperature-yield relationship remains on time, being the highest influences during grain filling period. Regarding atmospheric patterns, the summer Scandinavian pattern has significant influence on yield in IP. The third chapter identifies the oceanic and atmospheric patterns of climate variability affecting winter cropping systems in the IP. Also, hypotheses about the eco-physiological mechanism behind crop response are presented. It is focused on an analysis of rainfed wheat yield variability in IP. Climate variability is the main driver of changes in crop growth, development and yield, especially for rainfed production systems. In IP, wheat yields are strongly dependent on seasonal rainfall amount and temporal distribution of rainfall during the growing season. The major source of precipitation interannual variability in IP is the North Atlantic Oscillation (NAO) which has been related in part with changes in the Tropical Pacific (El Niño) and Atlantic (TNA) sea surface temperature (SST). The existence of some predictability has encouraged us to analyze the possible predictability of the wheat yield in the IP using SSTs anomalies as predictor. For this purpose, a crop model with a site specific calibration for the Northeast of IP and reanalysis climate datasets have been used to obtain long time series of attainable wheat yield and relate their variability with SST anomalies. The results show that El Niño and TNA influence rainfed wheat development and yield in IP and these impacts depend on the concurrent state of the NAO. Although crop-SST relationships do not equally hold on during the whole analyzed period, they can be explained by an understood and stationary ecophysiological mechanism. During the second half of the twenty century, the positive (negative) TNA index is associated to a negative (positive) phase of NAO, which exerts a positive (negative) influence on minimum temperatures (Tmin) and precipitation (Prec) during winter and, thus, yield increases (decreases) in IP. In relation to El Niño, the highest correlation takes place in the period 1981-2001. For these decades, high (low) yields are associated with an El Niño to La Niña (La Niña to El Niño) transitions or to El Niño events finishing. For these events, the regional associated atmospheric pattern resembles the NAO, which also influences directly on the maximum temperatures (Tmax) and precipitation experienced by the crop during flowering and grain filling. The co-effects of the two teleconnection patterns help to increase (decrease) the rainfall and decrease (increase) Tmax in IP, thus on increase (decrease) wheat yield. Part II. Crop forecasting The last chapter analyses the potential benefits for wheat and maize yields prediction from using seasonal climate forecasts (precipitation), and explores methods to apply such a climate forecast to crop models. Seasonal climate prediction has significant potential to contribute to the efficiency of agricultural management, and to food and livelihood security. Climate forecasts come in different forms, but probabilistic. For this purpose, two methods were evaluated and applied for disaggregating seasonal climate forecast into daily weather realizations: 1) a conditioned stochastic weather generator (predictWTD) and 2) a simple forecast probability resampler (FResampler1). The two methods were evaluated in a case study where the impacts of three scenarios of seasonal rainfall forecasts on rainfed wheat yield, on irrigation requirements and yields of maize in IP were analyzed. In addition, we estimated the economic margins and production risks associated with extreme scenarios of seasonal rainfall forecasts (dry and wet). The predWTD and FResampler1 methods used for disaggregating seasonal rainfall forecast into daily data needed by the crop simulation models provided comparable predictability. Therefore both methods seem feasible options for linking seasonal forecasts with crop simulation models for establishing yield forecasts or irrigation water requirements. The analysis of the impact on gross margin of grain prices for both crops and maize irrigation costs suggests the combination of market prices expected and the seasonal climate forecast can be a good tool in farmer’s decision-making, especially on dry forecast and/or in locations with low annual precipitation. These methodologies would allow quantifying the benefits and risks of a seasonal weather forecast to farmers in IP. Therefore, we would be able to establish early warning systems and to design crop management adaptation strategies that take advantage of favorable conditions or reduce the effect of adverse conditions. The potential usefulness of this Thesis is to apply the relationships found to crop forecasting on the next cropping season, suggesting opportunity time windows for the prediction. The methodology can be used as well for the prediction of future trends of IP yield variability. Both public (improvement of agricultural planning) and private (decision support to farmers, insurance companies) sectors may benefit from such an improvement of crop forecasting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fresh-cut or minimally processed fruit and vegetables have been physically modified from its original form (by peeling, trimming, washing and cutting) to obtain a 100% edible product that is subsequently packaged (usually under modified atmosphere packaging –MAP) and kept in refrigerated storage. In fresh-cut products, physiological activity and microbiological spoilage, determine their deterioration and shelf-life. The major preservation techniques applied to delay spoilage are chilling storage and MAP, combined with chemical treatments antimicrobial solutions antibrowning, acidulants, antioxidants, etc.). The industry looks for safer alternatives. Consequently, the sector is asking for innovative, fast, cheap and objective techniques to evaluate the overall quality and safety of fresh-cut products in order to obtain decision tools for implementing new packaging materials and procedures. In recent years, hyperspectral imaging technique has been regarded as a tool for analyses conducted for quality evaluation of food products in research, control and industries. The hyperspectral imaging system allows integrating spectroscopic and imaging techniques to enable direct identification of different components or quality characteristics and their spatial distribution in the tested sample. The objective of this work is to develop hyperspectral image processing methods for the supervision through plastic films of changes related to quality deterioration in packed readyto-use leafy vegetables during shelf life. The evolutions of ready-to-use spinach and watercress samples covered with three different common transparent plastic films were studied. Samples were stored at 4 ºC during the monitoring period (until 21 days). More than 60 hyperspectral images (from 400 to 1000 nm) per species were analyzed using ad hoc routines and commercial toolboxes of MatLab®. Besides common spectral treatments for removing additive and multiplicative effects, additional correction, previously to any other correction, was performed in the images of leaves in order to avoid the modification in their spectra due to the presence of the plastic transparent film. Findings from this study suggest that the developed images analysis system is able to deal with the effects caused in the images by the presence of plastic films in the supervision of shelf-life in leafy vegetables, in which different stages of quality has been identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El objeto de esta Tesis doctoral es el desarrollo de una metodologia para la deteccion automatica de anomalias a partir de datos hiperespectrales o espectrometria de imagen, y su cartografiado bajo diferentes condiciones tipologicas de superficie y terreno. La tecnologia hiperespectral o espectrometria de imagen ofrece la posibilidad potencial de caracterizar con precision el estado de los materiales que conforman las diversas superficies en base a su respuesta espectral. Este estado suele ser variable, mientras que las observaciones se producen en un numero limitado y para determinadas condiciones de iluminacion. Al aumentar el numero de bandas espectrales aumenta tambien el numero de muestras necesarias para definir espectralmente las clases en lo que se conoce como Maldicion de la Dimensionalidad o Efecto Hughes (Bellman, 1957), muestras habitualmente no disponibles y costosas de obtener, no hay mas que pensar en lo que ello implica en la Exploracion Planetaria. Bajo la definicion de anomalia en su sentido espectral como la respuesta significativamente diferente de un pixel de imagen respecto de su entorno, el objeto central abordado en la Tesis estriba primero en como reducir la dimensionalidad de la informacion en los datos hiperespectrales, discriminando la mas significativa para la deteccion de respuestas anomalas, y segundo, en establecer la relacion entre anomalias espectrales detectadas y lo que hemos denominado anomalias informacionales, es decir, anomalias que aportan algun tipo de informacion real de las superficies o materiales que las producen. En la deteccion de respuestas anomalas se asume un no conocimiento previo de los objetivos, de tal manera que los pixeles se separan automaticamente en funcion de su informacion espectral significativamente diferenciada respecto de un fondo que se estima, bien de manera global para toda la escena, bien localmente por segmentacion de la imagen. La metodologia desarrollada se ha centrado en la implicacion de la definicion estadistica del fondo espectral, proponiendo un nuevo enfoque que permite discriminar anomalias respecto fondos segmentados en diferentes grupos de longitudes de onda del espectro, explotando la potencialidad de separacion entre el espectro electromagnetico reflectivo y emisivo. Se ha estudiado la eficiencia de los principales algoritmos de deteccion de anomalias, contrastando los resultados del algoritmo RX (Reed and Xiaoli, 1990) adoptado como estandar por la comunidad cientifica, con el metodo UTD (Uniform Targets Detector), su variante RXD-UTD, metodos basados en subespacios SSRX (Subspace RX) y metodo basados en proyecciones de subespacios de imagen, como OSPRX (Orthogonal Subspace Projection RX) y PP (Projection Pursuit). Se ha desarrollado un nuevo metodo, evaluado y contrastado por los anteriores, que supone una variacion de PP y describe el fondo espectral mediante el analisis discriminante de bandas del espectro electromagnetico, separando las anomalias con el algortimo denominado Detector de Anomalias de Fondo Termico o DAFT aplicable a sensores que registran datos en el espectro emisivo. Se han evaluado los diferentes metodos de deteccion de anomalias en rangos del espectro electromagnetico del visible e infrarrojo cercano (Visible and Near Infrared-VNIR), infrarrojo de onda corta (Short Wavelenght Infrared-SWIR), infrarrojo medio (Meadle Infrared-MIR) e infrarrojo termico (Thermal Infrared-TIR). La respuesta de las superficies en las distintas longitudes de onda del espectro electromagnetico junto con su entorno, influyen en el tipo y frecuencia de las anomalias espectrales que puedan provocar. Es por ello que se han utilizado en la investigacion cubos de datos hiperepectrales procedentes de los sensores aeroportados cuya estrategia y diseno en la construccion espectrometrica de la imagen difiere. Se han evaluado conjuntos de datos de test de los sensores AHS (Airborne Hyperspectral System), HyMAP Imaging Spectrometer, CASI (Compact Airborne Spectrographic Imager), AVIRIS (Airborne Visible Infrared Imaging Spectrometer), HYDICE (Hyperspectral Digital Imagery Collection Experiment) y MASTER (MODIS/ASTER Simulator). Se han disenado experimentos sobre ambitos naturales, urbanos y semiurbanos de diferente complejidad. Se ha evaluado el comportamiento de los diferentes detectores de anomalias a traves de 23 tests correspondientes a 15 areas de estudio agrupados en 6 espacios o escenarios: Urbano - E1, Semiurbano/Industrial/Periferia Urbana - E2, Forestal - E3, Agricola - E4, Geologico/Volcanico - E5 y Otros Espacios Agua, Nubes y Sombras - E6. El tipo de sensores evaluados se caracteriza por registrar imagenes en un amplio rango de bandas, estrechas y contiguas, del espectro electromagnetico. La Tesis se ha centrado en el desarrollo de tecnicas que permiten separar y extraer automaticamente pixeles o grupos de pixeles cuya firma espectral difiere de manera discriminante de las que tiene alrededor, adoptando para ello como espacio muestral parte o el conjunto de las bandas espectrales en las que ha registrado radiancia el sensor hiperespectral. Un factor a tener en cuenta en la investigacion ha sido el propio instrumento de medida, es decir, la caracterizacion de los distintos subsistemas, sensores imagen y auxiliares, que intervienen en el proceso. Para poder emplear cuantitativamente los datos medidos ha sido necesario definir las relaciones espaciales y espectrales del sensor con la superficie observada y las potenciales anomalias y patrones objetivos de deteccion. Se ha analizado la repercusion que en la deteccion de anomalias tiene el tipo de sensor, tanto en su configuracion espectral como en las estrategias de diseno a la hora de registrar la radiacion prodecente de las superficies, siendo los dos tipos principales de sensores estudiados los barredores o escaneres de espejo giratorio (whiskbroom) y los barredores o escaneres de empuje (pushbroom). Se han definido distintos escenarios en la investigacion, lo que ha permitido abarcar una amplia variabilidad de entornos geomorfologicos y de tipos de coberturas, en ambientes mediterraneos, de latitudes medias y tropicales. En resumen, esta Tesis presenta una tecnica de deteccion de anomalias para datos hiperespectrales denominada DAFT en su variante de PP, basada en una reduccion de la dimensionalidad proyectando el fondo en un rango de longitudes de onda del espectro termico distinto de la proyeccion de las anomalias u objetivos sin firma espectral conocida. La metodologia propuesta ha sido probada con imagenes hiperespectrales reales de diferentes sensores y en diferentes escenarios o espacios, por lo tanto de diferente fondo espectral tambien, donde los resultados muestran los beneficios de la aproximacion en la deteccion de una gran variedad de objetos cuyas firmas espectrales tienen suficiente desviacion respecto del fondo. La tecnica resulta ser automatica en el sentido de que no hay necesidad de ajuste de parametros, dando resultados significativos en todos los casos. Incluso los objetos de tamano subpixel, que no pueden distinguirse a simple vista por el ojo humano en la imagen original, pueden ser detectados como anomalias. Ademas, se realiza una comparacion entre el enfoque propuesto, la popular tecnica RX y otros detectores tanto en su modalidad global como local. El metodo propuesto supera a los demas en determinados escenarios, demostrando su capacidad para reducir la proporcion de falsas alarmas. Los resultados del algoritmo automatico DAFT desarrollado, han demostrado la mejora en la definicion cualitativa de las anomalias espectrales que identifican a entidades diferentes en o bajo superficie, reemplazando para ello el modelo clasico de distribucion normal con un metodo robusto que contempla distintas alternativas desde el momento mismo de la adquisicion del dato hiperespectral. Para su consecucion ha sido necesario analizar la relacion entre parametros biofisicos, como la reflectancia y la emisividad de los materiales, y la distribucion espacial de entidades detectadas respecto de su entorno. Por ultimo, el algoritmo DAFT ha sido elegido como el mas adecuado para sensores que adquieren datos en el TIR, ya que presenta el mejor acuerdo con los datos de referencia, demostrando una gran eficacia computacional que facilita su implementacion en un sistema de cartografia que proyecte de forma automatica en un marco geografico de referencia las anomalias detectadas, lo que confirma un significativo avance hacia un sistema en lo que se denomina cartografia en tiempo real. The aim of this Thesis is to develop a specific methodology in order to be applied in automatic detection anomalies processes using hyperspectral data also called hyperspectral scenes, and to improve the classification processes. Several scenarios, areas and their relationship with surfaces and objects have been tested. The spectral characteristics of reflectance parameter and emissivity in the pattern recognition of urban materials in several hyperspectral scenes have also been tested. Spectral ranges of the visible-near infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) from hyperspectral data cubes of AHS (Airborne Hyperspectral System), HyMAP Imaging Spectrometer, CASI (Compact Airborne Spectrographic Imager), AVIRIS (Airborne Visible Infrared Imaging Spectrometer), HYDICE (Hyperspectral Digital Imagery Collection Experiment) and MASTER (MODIS/ASTER Simulator) have been used in this research. It is assumed that there is not prior knowledge of the targets in anomaly detection. Thus, the pixels are automatically separated according to their spectral information, significantly differentiated with respect to a background, either globally for the full scene, or locally by the image segmentation. Several experiments on different scenarios have been designed, analyzing the behavior of the standard RX anomaly detector and different methods based on subspace, image projection and segmentation-based anomaly detection methods. Results and their consequences in unsupervised classification processes are discussed. Detection of spectral anomalies aims at extracting automatically pixels that show significant responses in relation of their surroundings. This Thesis deals with the unsupervised technique of target detection, also called anomaly detection. Since this technique assumes no prior knowledge about the target or the statistical characteristics of the data, the only available option is to look for objects that are differentiated from the background. Several methods have been developed in the last decades, allowing a better understanding of the relationships between the image dimensionality and the optimization of search procedures as well as the subpixel differentiation of the spectral mixture and its implications in anomalous responses. In other sense, image spectrometry has proven to be efficient in the characterization of materials, based on statistical methods using a specific reflection and absorption bands. Spectral configurations in the VNIR, SWIR and TIR have been successfully used for mapping materials in different urban scenarios. There has been an increasing interest in the use of high resolution data (both spatial and spectral) to detect small objects and to discriminate surfaces in areas with urban complexity. This has come to be known as target detection which can be either supervised or unsupervised. In supervised target detection, algorithms lean on prior knowledge, such as the spectral signature. The detection process for matching signatures is not straightforward due to the complications of converting data airborne sensor with material spectra in the ground. This could be further complicated by the large number of possible objects of interest, as well as uncertainty as to the reflectance or emissivity of these objects and surfaces. An important objective in this research is to establish relationships that allow linking spectral anomalies with what can be called informational anomalies and, therefore, identify information related to anomalous responses in some places rather than simply spotting differences from the background. The development in recent years of new hyperspectral sensors and techniques, widen the possibilities for applications in remote sensing of the Earth. Remote sensing systems measure and record electromagnetic disturbances that the surveyed objects induce in their surroundings, by means of different sensors mounted on airborne or space platforms. Map updating is important for management and decisions making people, because of the fast changes that usually happen in natural, urban and semi urban areas. It is necessary to optimize the methodology for obtaining the best from remote sensing techniques from hyperspectral data. The first problem with hyperspectral data is to reduce the dimensionality, keeping the maximum amount of information. Hyperspectral sensors augment considerably the amount of information, this allows us to obtain a better precision on the separation of material but at the same time it is necessary to calculate a bigger number of parameters, and the precision lowers with the increase in the number of bands. This is known as the Hughes effects (Bellman, 1957) . Hyperspectral imagery allows us to discriminate between a huge number of different materials however some land and urban covers are made up with similar material and respond similarly which produces confusion in the classification. The training and the algorithm used for mapping are also important for the final result and some properties of thermal spectrum for detecting land cover will be studied. In summary, this Thesis presents a new technique for anomaly detection in hyperspectral data called DAFT, as a PP's variant, based on dimensionality reduction by projecting anomalies or targets with unknown spectral signature to the background, in a range thermal spectrum wavelengths. The proposed methodology has been tested with hyperspectral images from different imaging spectrometers corresponding to several places or scenarios, therefore with different spectral background. The results show the benefits of the approach to the detection of a variety of targets whose spectral signatures have sufficient deviation in relation to the background. DAFT is an automated technique in the sense that there is not necessary to adjust parameters, providing significant results in all cases. Subpixel anomalies which cannot be distinguished by the human eye, on the original image, however can be detected as outliers due to the projection of the VNIR end members with a very strong thermal contrast. Furthermore, a comparison between the proposed approach and the well-known RX detector is performed at both modes, global and local. The proposed method outperforms the existents in particular scenarios, demonstrating its performance to reduce the probability of false alarms. The results of the automatic algorithm DAFT have demonstrated improvement in the qualitative definition of the spectral anomalies by replacing the classical model by the normal distribution with a robust method. For their achievement has been necessary to analyze the relationship between biophysical parameters such as reflectance and emissivity, and the spatial distribution of detected entities with respect to their environment, as for example some buried or semi-buried materials, or building covers of asbestos, cellular polycarbonate-PVC or metal composites. Finally, the DAFT method has been chosen as the most suitable for anomaly detection using imaging spectrometers that acquire them in the thermal infrared spectrum, since it presents the best results in comparison with the reference data, demonstrating great computational efficiency that facilitates its implementation in a mapping system towards, what is called, Real-Time Mapping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to minimize car-based trips, transport planners have been particularly interested in understanding the factors that explain modal choices. Transport modelling literature has been increasingly aware that socioeconomic attributes and quantitative variables are not sufficient to characterize travelers and forecast their travel behavior. Recent studies have also recognized that users’ social interactions and land use patterns influence travel behavior, especially when changes to transport systems are introduced; but links between international and Spanish perspectives are rarely dealt with. The overall objective of the thesis is to develop a stepped methodology that integrate diverse perspectives to evaluate the willingness to change patterns of urban mobility in Madrid, based on four steps: (1st) analysis of causal relationships between both objective and subjective personal variables, and travel behavior to capture pro-car and pro-public transport intentions; (2nd) exploring the potential influence of individual trip characteristics and social influence variables on transport mode choice; (3rd) identifying built environment dimensions on travel behavior; and (4th) exploring the potential influence on transport mode choice of extrinsic characteristics of individual trip using panel data, land use variables using spatial characteristics and social influence variables. The data used for this thesis have been collected from a two panel smartphone-based survey (n=255 and 190 respondents, respectively) carried out in Madrid. Although the steps above are mainly methodological, the application to the area of Madrid allows deriving important results that can be directly used to forecast travel demand and to evaluate the benefits of specific policies that might be implemented in the area. The results demonstrated, respectively: (1st) transport policy actions are more likely to be effective when pro-car intention has been disrupted first; (2nd) the consideration of “helped” and “voluntary” users as tested here could have a positive and negative impact, respectively, on the use of public transport; (3rd) the importance of density, design, diversity and accessibility underlying dimensions responsible for land use variables; and (4th) there are clearly different types of combinations of social interactions, land use and time frame on travel behavior studies. Finally, with the objective to study the impact of demand measures to change urban mobility behavior, those previous results have been considered in a unique way, a hybrid discrete choice model has been used on a 5th step. Then it can be concluded that urban mobility behavior is not only ruled by the maximum utility criterion, but also by a strong psychological-environment concept, developed without the mediation of cognitive processes during choice, i.e., many people using public transport on their way to work do not do it for utilitarian reasons, but because no other choice is available. Regarding built environment dimensions, the more diversity place of residence, the more difficult the use of public transport or walking.