6 resultados para oxidante
em Universidad Politécnica de Madrid
Resumo:
Un incremento de la demanda del agua, junto con el aumento de la contaminación, ha provocado que hoy en día la reutilización de las aguas depuradas sea necesaria, pero la reutilización de aguas debe garantizar y minimizar los posibles riesgos sanitarios y medioambientales que su práctica pueda provocar. En España estos parámetros se encuentran regulados por el RD 1620/2007 relativo al régimen jurídico de la reutilización de las aguas depuradas. Las aguas regeneradas son aguas que ya han sido sometidas a un tratamiento de depuración, y a las cuales se aplica un posterior tratamiento adicional o complementario que permita adecuar su calidad al uso al que vaya a destinarse. Siendo requeridos para los distintos reúsos procesos de desinfección, uno de los principales sistemas utilizados es el cloro, debido a su sencilla aplicación y costos bajos, sin tomar en cuenta la posible formación de compuestos organohalogenados potencialmente cancerígenos. Es por esto que surge la necesidad de aplicar distintos sistemas de oxidación objeto de estudio en esta tesis, como el dióxido de cloro estabilizado, ozono y los procesos avanzados de oxidación (Advanced Oxidation Processes, AOP), ozono/peróxido y uv/peróxido. En esta tesis se investiga los rendimientos que pueden alcanzar estos sistemas en la eliminación de los ácidos húmicos y los fenoles, siendo las principales sustancias formadoras de subproductos de la desinfección, así mismo, se considera necesario garantizar la desinfección del agua a través del estudio de tres grupos de microrganismos, los coliformes totales, e. coli y enterococos, siendo un punto importante el posible recrecimiento microbiológico debido a una desinfección escasa, por la permanencia en el agua de los compuestos antes mencionados, o por alguna fuente de alimento que pudieran encontrar en el sistema de distribución. Lo más importante será la calidad que se pueda alcanzar con estos desinfectantes, con el fin de obtener agua para los distintos reúsos que existen en la actualidad. Y así no limitar los alcances que puede tener la reutilización de las aguas residuales. Basándose en lo antes mencionado se procedió a realizar la caracterización del agua del rio Manzanares, con el fin de determinar la cantidad de ácidos húmicos disueltos y fenoles, obteniendo valores bajos, se decidió incorporar a las muestras de rio 5 mg/L de estos compuestos, con el fin de observar de que manera podrían interferir en la desinfección de esta agua. De esta forma se logran obtener resultados óptimos de los sistemas de desinfección estudiados, siendo el Ozono un oxidante eficiente en la desinfección de los microrganismos y en la eliminación de ácidos húmicos y fenoles con tiempos de contacto cortos, mostrando deficiencias al permitir el recrecimiento de los coliformes totales. Del sistema de oxidación avanzada UV/Peróxido se determino como un eficiente desinfectante para garantizar la inexistencia de rebrotes, al paso del tiempo. Así mismo se concluye que tiene buenos rendimientos en la eliminación del ácido húmico y los fenoles. An increase in water demand, coupled with increasing pollution, has caused today reuse of treated water is necessary, but must ensure water reuse and minimize potential health and environmental risks that their practice is cause. In Spain these parameters are regulated by Royal Decree 1620/2007 on the legal regime of the reuse of treated water. The reclaimed water is water that has already been subjected to a depuration treatment, which is applied as a subsequent further treatment that will bring quality to the use to which is to be delivered. As required for various reuses disinfection processes, one of the main systems used is chlorine, due to its simple implementation and low costs, without taking into account the possible formation of potentially carcinogenic halogenated organic compounds. That is why there is a need to apply different oxidation systems studied in this thesis, as stabilized chlorine dioxide, ozone and advanced oxidation processes (AOP), ozone/peroxide and UV/peroxide. This thesis investigates the rates can reach these systems in removing humic acids and phenols, the main substances forming disinfection byproducts, likewise, it is considered necessary to ensure water disinfection through the study of three groups of microorganisms, total coliform, e. coli and enterococci, the important point being a possible regrowth due to microbiological disinfection scarce, the water remaining on the aforementioned compounds, or a food source which may be found in the distribution system. The most important quality is that achievable with these disinfectants, with the water to obtain various reuses that exist today. And thus not limit the scope that can be reuse of wastewater. Based on the above we proceeded to perform characterization Manzanares river water, in order to determine the quantity of dissolved humic acids and phenols, obtaining low values, it was decided to incorporate river samples 5 mg / L of these compounds, in order to observe how they might interfere with the disinfection of the water. Thus optimum results are achieved for disinfection systems studied, being efficient ozone oxidant in the disinfection of microorganisms and the removal of humic acids and phenols with short contact times, showing gaps to allow regrowth total coliforms. Advanced oxidation system UV / peroxide were determined as an efficient disinfectant to ensure the absence of volunteers, the passage of time. Also it is concluded that has good yields in removing humic acid and phenols.
Resumo:
Esta investigación se ha dividido en tres etapas, primero se analizó el efecto de los hidrocarburos (crudos liviano, extrapesado y gasoil) a razón de dosis bajas 2 y 4 % p/p, y altas 30, 40 y 50 % p/p en un suelo arenoso de la Mesa de Guanipa en Venezuela, empleando técnicas analíticas e instrumentales para su caracterización, también se determinó el efecto que tienen estos contaminantes sobre la actividad biológica del suelo durante 29 días de incubación. La segunda fase consistió en aplicar un tratamiento térmico a una velocidad máxima de calentamiento de 0,33 ºC/min por 2h, a muestras de suelo de la zona central de España, contaminado con gasoil a razón de 2, 4, 10, 20, 50 % p/p. En la última fase se utilizó una propuesta de la deshalogenación química, en suelos contaminados con 413, 95, 14,2 ppm de askarel, y en aceites minerales con 363, 180, 100, 94 ppm de askarel. Los resultados mostraron, que el efecto que causan los hidrocarburos en el suelo dependen de las características propias del suelo, su entorno, concentración y composición del hidrocarburo, con respecto a las curvas acumuladas de mg C - CO2 /100 g de suelo, se observó que los hidrocarburos inhiben la biomasa microbiana en los suelos. Para el tratamiento térmico los resultados han mostrado una eliminación del gasoil en un 94,11 % en la muestra que contenía 2% gasoil, 95,85 % para la muestra del 4 %, 98,48 % para la muestra del 10 %, 99,45 % para la del 20 % y finalmente 99,51 % para la del 50 % gasoil, se observó que la adición del gasoil al suelo produce cambios significativos con respecto al testigo, luego del tratamiento térmico la fracción de la materia orgánica en el suelo disminuyó significativamente. La deshalogenación química propuesta en aceites dieléctricos como en suelos resultó satisfactoria. En aceites han resultado 8 tratamientos con eliminaciones del cloro por encima del 50 % y en suelos 4 tratamientos con 50 % de eliminación. Además se ha experimentado con la urea para el caso del suelo contaminado dando eliminación de un 80,4 % del cloro, y con etanol como agente oxidante en los aceites dieléctricos, resultando un 40 % de eliminación.
Resumo:
Mediante ensayos de flexión en tres puntos se compara y evalúa el comportamiento mecánico de la aleación W- 1wt%Y2O3 con el W puro fabricados ambos mediante HIP. Se ha obtenido la tenacidad de fractura, la resistencia a flexión y el límite elástico en atmósfera oxidante y de vacío en un intervalo de temperaturas comprendido entre -196 ºC, ensayos de inmersión en nitrógeno líquido, y 1200 ºC. Previamente, se ha medido la densidad, la dureza mediante ensayos Vickers y el módulo de elasticidad dinámico de los materiales. Además, la dureza y el módulo de elasticidad se han comparado con los obtenidos mediante ensayos instrumentados de nanoindentación. Finalmente se ha realizado un pequeño estudio de las superficies de fractura de las muestras ensayadas mediante microscopía electrónica de barrido para poder relacionar el modo de rotura de los materiales y las propiedades mecánicas macroscópicas con los micromecanismos de fallo involucrados en función de la temperatura.
Resumo:
Los procesos de biofiltración por carbón activo biológico se han utilizado desde hace décadas, primeramente en Europa y después en Norte América, sin embargo no hay parámetros de diseño y operación específicos que se puedan utilizar de guía para la biofiltración. Además, el factor coste a la hora de elegir el carbón activo como medio de filtración impacta en el presupuesto, debido al elevado coste de inversión y de regeneración. A la hora de diseñar y operar filtros de carbón activo los requisitos que comúnmente se buscan son eliminar materia orgánica, olor, y sabor de agua. Dentro de la eliminación de materia orgánica se precisa la eliminación necesaria para evitar subproductos en la desinfección no deseados, y reducir los niveles de carbono orgánico disuelto biodegradable y asimilable a valores que consigan la bioestabilidad del agua producto, a fin de evitar recrecimiento de biofilm en las redes de distribución. El ozono se ha utilizado durante años como un oxidante previo a la biofiltración para reducir el olor, sabor, y color del agua, oxidando la materia orgánica convirtiendo los compuestos no biodegradables y lentamente biodegradables en biodegradables, consiguiendo que puedan ser posteriormente eliminados biológicamente en los filtros de carbón activo. Sin embargo la inestabilidad del ozono en el agua hace que se produzcan ácidos carboxilos, alcoholes y aldehídos, conocidos como subproductos de la desinfección. Con esta tesis se pretende dar respuesta principalmente a los siguientes objetivos: análisis de parámetros requeridos para el diseño de los filtros de carbón activo biológicos, necesidades de ozonización previa a la filtración, y comportamiento de la biofiltración en un sistema compuesto de coagulación sobre un filtro de carbón activo biológico. Los resultados obtenidos muestran que la biofiltración es un proceso que encaja perfectamente con los parámetros de diseño de plantas con filtración convencional. Aunque la capacidad de eliminación de materia orgánica se reduce a medida que el filtro se satura y entra en la fase biológica, la biodegradación en esta fase se mantienen estable y perdura a lo lago de los meses sin preocupaciones por la regeneración del carbón. Los valores de carbono orgánico disuelto biodegradable se mantienen por debajo de los marcados en la literatura existente para agua bioestable, lo que hace innecesaria la dosificación de ozono previa a la biofiltración. La adición de la coagulación con la corrección de pH sobre el carbón activo consigue una mejora en la reducción de la materia orgánica, sin afectar a la biodegradación del carbón activo, cumpliendo también con los requerimientos de turbidez a la salida de filtración. Lo que plantea importantes ventajas para el proceso. Granular activated carbon filters have been used for many years to treat and produce drinking water using the adsorption capacity of carbon, replacing it once the carbon lost its adsorption capacity and became saturated. On the other hand, biological activated carbon filters have been studied for decades, firstly in Europe and subsequently in North America, nevertheless are no generally accepted design and operational parameters documented to be used as design guidance for biofiltration. Perhaps this is because of the cost factor; to choose activated carbon as a filtration media requires a significant investment due to the high capital and regeneration costs. When activated carbon filters are typically required it is for the reduction of an organic load, removal of colour, taste and / or odour. In terms of organic matter reduction, the primary aim is to achieve as much removal as possible to reduce or avoid the introduction of disinfection by products, the required removal in biodegradable dissolved organic carbon and assimilable organic carbon to produce a biologically stable potable water which prohibits the regrowth of biofilm in the distribution systems. The ozone has historically been used as an oxidant to reduce colour, taste and odour by oxidizing the organic matter and increasing the biodegradability of the organic matter, enhancing the effectiveness of organic removal in downstream biological activated carbon filters. Unfortunately, ozone is unstable in water and reacts with organic matter producing carboxylic acids, alcohols, and aldehydes, known as disinfection by products. This thesis has the following objectives: determination of the required parameters for the design of the biological activated filters, the requirement of ozonization as a pre-treatment for the biological activated filters, and a performance assessment of biofiltration when coagulation is applied as a pretreatment for biological activated carbon filters. The results show that the process design parameters of biofiltration are compatible with those of conventional filtration. The organic matter removal reduces its effectiveness as soon as the filter is saturated and the biological stage starts, but the biodegradation continues steadily and lasts for a long period of time without the need of carbon regeneration. The removal of the biodegradable dissolved organic carbon is enough to produce a biostable water according to the values shown on the existing literature; therefore ozone is not required prior to the filtration. Furthermore, the addition of coagulant and pH control before the biological activated carbon filter achieves a additional removal of organic matter, without affecting the biodegradation that occurs in the activated carbon whilst also complying with the required turbidity removal.
Resumo:
Durante la última década, se han llevado acabo numeroso estudios sobre la síntesis de materiales fotoluminiscentes sub-micrónicos, en gran medida, al amplio número de aplicaciones que demandan este tipo de materiales. En concreto dentro de los materiales fosforescentes o también denominados materiales con una prolongada persistencia de la luminiscencia, los estudios se han enfocado en la matriz de SrAl2O4 dopada con Europio (Eu2+) y Disprosio (Dy3+) dado que tiene mayor estabilidad y persistencia de la fosforescencia con respecto a otras matrices. Estos materiales se emplean mayoritariamente en pinturas luminiscentes, tintas, señalización de seguridad pública, cerámicas, relojes, textiles y juguetes fosforescentes. Dado al amplio campo de aplicación de los SrAl2O4:Eu, Dy, se han investigado múltiples rutas de síntesis como la ruta sol-gel, la síntesis hidrotermal, la síntesis por combustión, la síntesis láser y la síntesis en estado sólido con el fin de desarrollar un método eficiente y que sea fácilmente escalable. Sin embargo, en la actualidad el método que se emplea para el procesamiento a nivel industrial de los materiales basados en aluminato de estroncio es la síntesis por estado sólido, que requiere de temperaturas de entre 1300 a 1900oC y largos tiempos de procesamiento. Además el material obtenido tiene un tamaño de partícula de 20 a 100 μm; siendo este tamaño restrictivo para el empleo de este tipo de material en determinadas aplicaciones. Por tanto, el objetivo de este trabajo es el desarrollo de nuevas estrategias que solventen las actuales limitaciones. Dentro de este marco se plantean una serie de objetivos específicos: Estudio de los parámetros que gobiernan los procesos de reducción del tamaño de partícula mediante molienda y su relación en la respuesta fotoluminiscente. Estudio de la síntesis por combustión de SrAl2O4:Eu, Dy, evaluando el efecto de la temperatura y la cantidad de combustible (urea) en el proceso para la obtención de partículas cristalinas minimizando la presencia de fases secundarias. Desarrollo de nuevas rutas de síntesis de SrAl2O4:Eu, Dy empleando el método de sales fundidas. Determinación de los mecanismos de reacción en presencia de la sal fundida en función de los parámetros de proceso que comprende la relación de sales y reactivos, la naturaleza de la alúmina y su tamaño, la temperatura y atmósfera de tratamiento. Mejora de la eficiencia de los procesos de síntesis para obtener productos con propiedades finales óptimas en procesos factibles industrialmente para su transferencia tecnológica. Es este trabajo han sido evaluados los efectos de diferentes procesos de molienda para la reducción del tamaño de partícula del material de SrAl2O4:Eu, Dy comercial. En el proceso de molienda en medio húmedo por atrición se observa la alteración de la estructura cristalina del material debido a la reacción de hidrólisis generada incluso empleando como medio líquido etanol absoluto. Con el fin de solventar las desventajas de la molienda en medio húmedo se llevo a cabo un estudio de la molturación en seco del material. La molturación en seco de alta energía reduce significativamente el tamaño medio de partícula. Sin embargo, procesos de molienda superiores a una duración de 10 minutos ocasionan un aumento del estado de aglomeración de las partículas y disminuyen drásticamente la respuesta fotoluminiscente del material. Por tanto, se lleva a cabo un proceso de molienda en seco de baja energía. Mediante este método se consigue reducir el tamaño medio de partícula, d50=2.8 μm, y se mejora la homogeneidad de la distribución del tamaño de partícula evitando la amorfización del material. A partir de los resultados obtenidos mediante difracción de rayos X y microscopia electrónica de barrido se infiere que la disminución de la intensidad de la fotoluminiscencia después de la molienda en seco de alta energía con respecto al material inicial se debe principalmente a la reducción del tamaño de cristalito. Se observan menores variaciones en la intensidad de la fotoluminiscencia cuando se emplea un método de molienda de baja de energía ya que en estos procesos se preserva el dominio cristalino y se reduce la amorfización significativamente. Estos resultados corroboran que la intensidad de la fotoluminiscencia y la persistencia de la luminiscencia de los materiales de SrAl2O4:Eu2+, Dy3+ dependen extrínsecamente de la morfología de las partículas, del tamaño de partícula, el tamaño de grano, los defectos superficiales e intrínsecamente del tamaño de cristalito. Siendo las características intrínsecas las que dominan con respecto a las extrínsecas y por tanto tienen mayor relevancia en la respuesta fotoluminiscente. Mediante síntesis por combustión se obtuvieron láminas nanoestructuradas de SrAl2O4:Eu, Dy de ≤1 μm de espesor. La cantidad de combustible, urea, en la reacción influye significativamente en la formación de determinadas fases cristalinas. Para la síntesis del material de SrAl2O4:Eu, Dy es necesario incluir un contenido de urea mayor que el estequiométrico (siendo m=1 la relación estequiométrica). La incorporación de un exceso de urea (m>1) requiere de la presencia de un agente oxidante interno, HNO3, para que la reacción tenga lugar. El empleo de un mayor contenido de urea como combustible permite una quelación efectiva de los cationes en el sistema y la creación de las condiciones reductoras para obtener un material de mayor cristalinidad y con mejores propiedades fotoluminiscentes. El material de SrAl2O4:Eu, Dy sintetizado a una temperatura de ignición de 600oC tiene un tamaño medio 5-25 μm con un espesor de ≤1 μm. Mediante procesos de molturación en seco de baja energía es posible disminuir el tamaño medio de partícula ≈2 μm y homogenizar la distribución del tamaño de partícula pero hay un deterioro asociado de la respuesta luminiscente. Sin embargo, se puede mejorar la respuesta fotoluminiscente empleando un tratamiento térmico posterior a 900oC N2-H2 durante 1 hora que no supone un aumento del tamaño de partícula pero si permite aumentar el tamaño de cristalito y la reducción del Eu3+ a Eu2+. Con respecto a la respuesta fotoluminiscente, se obtiene valores de la intensidad de la fotoluminiscencia entre un 35%-21% con respecto a la intensidad de un material comercial de referencia. Además la intensidad inicial del decaimiento de la fosforescencia es un 20% de la intensidad del material de referencia. Por tanto, teniendo en cuenta estos resultados, es necesario explorar otros métodos de síntesis para la obtención de los materiales bajo estudio. Por esta razón, en este trabajo se desarrollo una ruta de síntesis novedosa para sintetizar SrAl2O4:Eu, Dy mediante el método de sales fundidas para la obtención de materiales de gran cristalinidad con tamaños de cristalito del orden nanométrico. Se empleo como sal fundente la mezcla eutéctica de NaCl y KCl, denominada (NaCl-KCl)e. La principal ventaja de la incorporación de la mezcla es el incremento la reactividad del sistema, reduciendo la temperatura de formación del SrAl2O4 y la duración del tratamiento térmico en comparación con la síntesis en estado sólido. La formación del SrAl2O4 es favorecida ya que se aumenta la difusión de los cationes de Sr2+ en el medio líquido. Se emplearon diferentes tipos de Al2O3 para evaluar el papel del tamaño de partícula y su naturaleza en la reacción asistida por sales fundidas y por tanto en la morfología y propiedades del producto final. Se obtuvieron partículas de morfología pseudo-esférica de tamaño ≤0.5 μm al emplear como alúmina precursora partículas sub-micrónicas ( 0.5 μm Al2O3, 0.1 μm Al2 O3 y γ-Al2O3). El mecanismo de reacción que tiene lugar se asocia a procesos de disolución-precipitación que dominan al emplear partículas de alúmina pequeñas y reactivas. Mientras al emplear una alúmina de 6 μm Al2O3 prevalecen los procesos de crecimiento cristalino siguiendo un patrón o plantilla debido a la menor reactividad del sistema. La nucleación y crecimiento de nanocristales de SrAl2O4:Eu, Dy se genera sobre la superficie de la alúmina que actúa como soporte. De esta forma se desarrolla una estructura del tipo coraza-núcleo («core-shell» en inglés) donde la superficie externa está formada por los cristales fosforescentes de SrAl2O4 y el núcleo está formado por alúmina. Las partículas obtenidas tienen una respuesta fotoluminiscente diferente en función de la morfología final obtenida. La optimización de la relación Al2O3/SrO del material de SrAl2O4:Eu, Dy sintetizado a partir de la alúmina de 6 μm permite reducir las fases secundarias y la concentración de dopantes manteniendo la respuesta fotoluminiscente. Comparativamente con un material comercial de SrAl2O4:Eu, Dy de referencia, se han alcanzado valores de la intensidad de la emisión de hasta el 90% y de la intensidad inicial de las curvas de decaimiento de la luminiscencia de un 60% para el material sintetizado por sales fundidas que tiene un tamaño medio ≤ 10μm. Por otra parte, es necesario tener en cuenta que el SrAl2O4 tiene dos polimorfos, la fase monoclínica que es estable a temperaturas inferiores a 650oC y la fase hexagonal, fase de alta temperatura, estable a temperaturas superiores de 650oC. Se ha determinado que fase monoclínica presenta propiedades luminiscentes, sin embargo existen discordancias a cerca de las propiedades luminiscentes de la fase hexagonal. Mediante la síntesis por sales fundidas es posible estabilizar la fase hexagonal empleando como alúmina precursora γ-Al2O3 y un exceso de Al2O3 (Al2O3/SrO:2). La estabilización de la fase hexagonal a temperatura ambiente se produce cuando el tamaño de los cristales de SrAl2O4 es ≤20 nm. Además se observó que la fase hexagonal presenta respuesta fotoluminiscente. El diseño de materiales de SrAl2O4:Eu,Dy nanoestructurados permite modular la morfología del material y por tanto la intensidad de la de la fotoluminiscencia y la persistencia de la luminiscencia. La disminución de los materiales precursores, la temperatura y el tiempo de tratamiento significa la reducción de los costes económicos del material. De ahí la viabilidad de los materiales de SrAl2O4:Eu,Dy obtenidos mediante los procesos de síntesis propuestos en esta memoria de tesis para su posterior escalado industrial. ABSTRACT The synthesis of sub-micron photoluminescent particles has been widely studied during the past decade because of the promising industrial applications of these materials. A large number of matrices has been developed, being SrAl2O4 host doped with europium (Eu2+) and dysprosium (Dy3+) the most extensively studied, because of its better stability and long-lasting luminescence. These functional inorganic materials have a wide field of application in persistent luminous paints, inks and ceramics. Large attention has been paid to the development of an efficient method of preparation of SrAl2O4 powders, including solgel method, hydrothermal synthesis, laser synthesis, combustion synthesis and solid state reaction. Many of these techniques are not compatible with large-scale production and with the principles of sustainability. Moreover, industrial processing of highly crystalline powders usually requires high synthesis temperatures, typically between 1300 a 1900oC, with long processing times, especially for solid state reaction. As a result, the average particle size is typically within the 20-100 μm range. This large particle size is limiting for current applications that demand sub-micron particles. Therefore, the objective of this work is to develop new approaches to overcome these limitations. Within this frame, it is necessary to undertake the following purposes: To study the parameters that govern the particle size reduction by milling and their relation with the photoluminescence properties. To obtain SrAl2O4:Eu, Dy by combustion synthesis, assessing the effect of the temperature and the amount of fuel (urea) to synthesize highly crystalline particles minimizing the presence of secondary phases. To develop new synthesis methods to obtain SrAl2O4:Eu, Dy powders. The molten salt synthesis has been proposed. As the method is a novel route, the reaction mechanism should be determine as a function of the salt mixture, the ratio of the salt, the kind of Al2O3 and their particle size and the temperature and the atmosphere of the thermal treatment. To improve the efficiency of the synthesis process to obtain SrAl2O4:Eu, Dy powders with optimal final properties and easily scalable. On the basis of decreasing the particle size by using commercial product SrAl2O4:Eu2+, Dy3+ as raw material, the effects of different milling methods have been evaluated. Wet milling can significantly alter the structure of the material through hydrolysis reaction even in ethanol media. For overcoming the drawbacks of wet milling, a dry milling-based processes are studied. High energy dry milling process allows a great reduction of the particle size, however milling times above 10 min produce agglomeration and accelerates the decrease of the photoluminescence feature. To solve these issues the low energy dry milling process proposed effectively reduces the particle size to d50=2.8 μm, and improves the homogeneity avoiding the amorphization in comparison with previous methods. The X-ray diffraction and scanning electron microscope characterization allow to infer that the large variations in PL (Photoluminescence) values by high energy milling process are a consequence mainly of the crystallite size reduction. The lesser variation in PL values by low energy milling proces is related to the coherent crystalline domain preservation and the unnoticeable amorphization. These results corroborate that the photoluminescence intensity and the persistent luminescence of the SrAl2O4:Eu2+, Dy3+ powders depend extrinsically on the morphology of the particles such as particle size, grain size, surface damage and intrinsically on the crystallinity (crystallite size); being the intrinsically effects the ones that have a significant influence on the photoluminescent response. By combustion method, nanostructured SrAl2O4:Eu2+, Dy3+ sheets with a thickness ≤1 μm have been obtained. The amount of fuel (urea) in the reaction has an important influence on the phase composition; urea contents larger than the stoichiometric one require the presence of an oxidant agent such as HNO3 to complete the reaction. A higher amount of urea (excess of urea: denoted m>1, being m=1 the stoichiometric composition) including an oxidizing agent produces SrAl2O4:Eu2+,Dy3+ particles with persistent luminescence due to the effective chelation of the cations and the creation of suitable atmospheric conditions to reduce the Eu3+ to Eu2+. Therefore, optimizing the synthesis parameters in combustion synthesis by using a higher amount of urea and an internal oxidizing agent allows to complete the reaction. The amount of secondary phases can be significantly reduced and the photoluminescence response can be enhanced. This situation is attributed to a higher energy that improves the crystallinity of the powders. The powders obtained have a particle size c.a. 5-25 μm with a thickness ≤1 μm and require relatively low ignition temperatures (600oC). It is possible to reduce the particle size by a low energy dry milling but this process implies the decrease of the photoluminescent response. However, a post-thermal treatment in a reducing atmosphere allows the improvement of the properties due to the increment of crystallinity and the reduction of Eu3+ to Eu2+. Compared with the powder resulted from solid state method (commercial reference: average particle size, 20 μm and heterogeneous particle size distribution) the emission intensity of the powder prepared by combustion method achieve the values between 35% to 21% of the reference powder intensity. Moreover, the initial intensity of the decay curve is 20% of the intensity of the reference powder. Taking in account these results, it is necessary to explore other methods to synthesize the powders For that reason, an original synthetic route has been developed in this study: the molten salt assisted process to obtain highly crystalline SrAl2O4 powders with nanometric sized crystallites. The molten salt was composed of a mixture of NaCl and KCl using a 0.5:0.5 molar ratio (eutectic mixture hereafter abbreviated as (NaCl-KCl)e). The main advantages of salt addition is the increase of the reaction rate, the significant reduction of the synthesis temperature and the duration of the thermal treatment in comparison with classic solid state method. The SrAl2O4 formation is promoted due to the high mobility of the Sr2+ cations in the liquid medium. Different kinds of Al2O3 have been employed to evaluate the role of the size and the nature of this precursor on the kinetics of reaction, on the morphology and the final properties of the product. The SrAl2O4:Eu2+, Dy3+ powders have pseudo-spherical morphology and particle size ≤0.5 μm when a sub-micron Al2O3 ( 0.5 μm Al2O3, 0.1 μm Al2O3 and γ-Al2O3) has been used. This can be attributed to a higher reactivity in the system and the dominance of dissolution-precipitation mechanism. However, the use of larger alumina (6 μm Al2O3) modifies the reaction pathway leading to a different reaction evolution. More specifically, the growth of SrAl2O4 sub-micron particles on the surface of hexagonal platelets of 6μm Al2O3 is promoted. The particles retain the shape of the original Al2O3 and this formation process can be attributed to a «core-shell» mechanism. The particles obtained exhibit different photoluminescent response as a function of the final morphology of the powder. Therefore, through this study, it has been elucidated the reaction mechanisms of SrAl2O4 formation assisted by (NaCl-KCl)e that are governed by the diffusion of SrCO3 and the reactivity of the alumina particles. Optimizing the Al2O3/SrO ratio of the SrAl2O4:Eu, Dy powders synthesized with 6 μm Al2O3 as a precursor, the secondary phases and the concentration of dopant needed can be reduced keeping the photoluminescent response of the synthesized powder. Compared with the commercial reference powder, up to 90% of the emission intensity of the reference powder has been achieved for the powder prepared by molten salt method using 6μm Al2O3 as alumina precursor. Concerning the initial intensity of the decay curve, 60% of the initial intensity of the reference powder has been obtained. Additionally, it is necessary to take into account that SrAl2O4 has two polymorphs: monoclinic symmetry that is stable at temperatures below 650oC and hexagonal symmetry that is stable above this temperature. Monoclinic phase shows luminescent properties. However, there is no clear agreement on the emission of the hexagonal structure. By molten salt, it is possible to stabilize the hexagonal phase of SrAl2O4 employing an excess of Al2O3 (Al2O3/SrO: 2) and γ-Al2O3 as a precursor. The existence of nanometric crystalline domains with lower size (≤20 nm) allows the stabilization of the hexagonal phase. Moreover, it has been evidenced that the hexagonal polymorph exhibits photoluminescent response. To sum up, the design of nanostructured SrAl2O4:Eu2+, Dy3+ materials allows to obtain different morphologies and as consequence different photoluminescent responses. The reduction of temperature, duration of the thermal treatment and the precursors materials needed imply the decrease of the economic cost of the material. Therefore, the viability, suitability and scalability of the synthesis strategy developed in this work to process SrAl2O4:Eu2+, Dy3+ are demonstrated.
Resumo:
Uno de los principales retos de la sociedad actual es la evolución de sectores como el energético y el de la automoción a un modelo sostenible, responsable con el medio ambiente y con la salud de los ciudadanos. Una de las posibles alternativas, es la célula de combustible de hidrógeno, que transforma la energía química del combustible (hidrógeno) en corriente continua de forma limpia y eficiente. De entre todos los tipos de célula, gana especial relevancia la célula de membrana polimérica (PEM), que por sus características de peso, temperatura de trabajo y simplicidad; se presenta como una gran alternativa para el sector de la automoción entre otros. Por ello, el objetivo de este trabajo es ahondar en el conocimiento de la célula de combustible PEM. Se estudiarán los fundamentos teóricos que permitan comprender su funcionamiento, el papel de cada uno de los elementos de la célula y cómo varían sus características el funcionamiento general de la misma. También se estudiará la caracterización eléctrica, por su papel crucial en la evaluación del desempeño de la célula y para la comparación de modificaciones introducidas en ella. Además, se realizará una aplicación práctica en colaboración con los proyectos de fin de máster y doctorado de otros estudiantes del Politécnico de Milán, para implementar las técnicas aprendidas de caracterización eléctrica en una célula trabajando con diferentes tipos de láminas de difusión gaseosa (GDL y GDM) preparadas por estudiantes. Los resultados de la caracterización, permitirán analizar las virtudes de dos modificaciones en la composición clásica de la célula, con el fin de mejorar la gestión del agua que se produce en la zona catódica durante la reacción, disminuyendo los problemas de difusión a altas densidades de corriente y la consiguiente pérdida de potencial en la célula. Las dos modificaciones son: la inclusión de una lámina de difusión microporosa (MPL) a la lámina macroporosa habitual (GDL), y el uso de diversos polímeros con mejores propiedades hidrófobas en el tratamiento de dichas láminas de difusión. La célula de combustible es un sistema de conversión de energía electroquímico, en el que se trasforma de forma directa, energía química en energía eléctrica de corriente continua. En el catalizador de platino del ánodo se produce la descomposición de los átomos de hidrógeno. Los protones resultantes viajarán a través de la membrana de conducción protónica (que hace las veces de electrolito y supone el alma de la célula PEM) hasta el cátodo. Los electrones, en cambio, alcanzarán el cátodo a través de un circuito externo produciendo trabajo. Una vez ambas especies se encuentran en el cátodo, y junto con el oxígeno que sirve como oxidante, se completa la reacción, produciéndose agua. El estudio termodinámico de la reacción que se produce en la célula nos permite calcular el trabajo eléctrico teórico producido por el movimiento de cargas a través del circuito externo, y con él, una expresión del potencial teórico que presentará la célula, que variará con la temperatura y la presión; Para una temperatura de 25°C, este potencial teórico es de 1.23 V, sin embargo, el potencial de la célula en funcionamiento nunca presenta este valor. El alejamiento del comportamiento teórico se debe, principalmente, a tres tipos de pérdidas bien diferenciadas: Pérdidas de activación: El potencial teórico representa la tensión de equilibrio, para la que no se produce un intercambio neto de corriente. Por tanto, la diferencia de potencial entre el ánodo y el cátodo debe alejarse del valor teórico para obtener una corriente neta a través del circuito externo. Esta diferencia con el potencial teórico se denomina polarización de activación, y conlleva una pérdida de tensión en la célula. Así pues estas pérdidas tienen su origen en la cinética de la reacción electroquímica. Pérdidas óhmicas: Es una suma de las resistencias eléctricas en los elementos conductores, la resistencia en la membrana electrolítica a la conducción iónica y las resistencias de contacto. Pérdidas por concentración: Estas pérdidas se producen cuando los gases reactivos en el área activa son consumidos en un tiempo menor del necesario para ser repuestos. Este fenómeno es crítico a altas densidades de corriente, cuando los gases reactivos son consumidos con gran velocidad, por lo que el descenso de concentración de reactivos en los electrodos puede provocar una caída súbita de la tensión de la célula. La densidad de corriente para la cual se produce esta caída de potencial en unas condiciones determinadas se denomina densidad límite de corriente. Así pues, estas pérdidas tienen su origen en los límites de difusión de las especies reactivas a través de la célula. Además de la membrana electrolítica y el catalizador, en la célula de combustible podemos encontrar como principales componentes los platos bipolares, encargados de conectar la célula eléctricamente con el exterior y de introducir los gases reactivos a través de sus conductos; y las láminas difusivas, que conectan eléctricamente el catalizador con los platos bipolares y sirven para distribuir los gases reactivos de forma que lleguen a todo el área activa, y para evacuar el exceso de agua que se acumula en el área activa.La lámina difusiva, más conocida como GDL, será el argumento principal de nuestro estudio. Está conformada por un tejido de fibra de carbono macroporosa, que asegure el contacto eléctrico entre el catalizador y el plato bipolar, y es tratada con polímeros para proporcionarle propiedades hidrófobas que le ayuden en la evacuación de agua. La evacuación del agua es tan importante, especialmente en el cátodo, porque de lo contrario, la cantidad de agua generada por la reacción electroquímica, sumada a la humedad que portan los gases, puede provocar inundaciones en la zona activa del electrodo. Debido a las inundaciones, el agua obstruye los poros del GDL, dificultando la difusión de especies gaseosas y aumentando las pérdidas por concentración. Por otra parte, si demasiada agua se evacúa del electrodo, se puede producir un aumento de las pérdidas óhmicas, ya que la conductividad protónica de la membrana polimérica, es directamente proporcional a su nivel de humidificación. Con el fin de mejorar la gestión del agua de la célula de combustible, se ha añadido una capa microporosa denominada MPL al lado activo del GDL. Esta capa, constituida por una mezcla de negro de carbón con el polímero hidrófobo como aglutinante, otorga al GDL un mejor acabado superficial que reduce la resistencia de contacto con el electrodo, además la reducción del tamaño de las gotas de agua al pasar por el MPL mejora la difusión gaseosa por la disminución de obstrucciones en el GDL. Es importante tener cuidado en los tratamientos de hidrofobización de estos dos elementos, ya que, cantidades excesivas de polímero hidrófobo podrían reducir demasiado el tamaño de los poros, además de aumentar las pérdidas resistivas por su marcado carácter dieléctrico. Para el correcto análisis del funcionamiento de una célula de combustible, la herramienta fundamental es su caracterización eléctrica a partir de la curva de polarización. Esta curva representa la evolución del potencial de la célula respecto de la densidad de corriente, y su forma viene determinada principalmente por la contribución de las tres pérdidas mencionadas anteriormente. Junto con la curva de polarización, en ocasiones se presenta la curva de densidad de potencia, que se obtiene a partir de la misma. De forma complementaria a la curva de polarización, se puede realizar el estudio del circuito equivalente de la célula de combustible. Este consiste en un circuito eléctrico sencillo, que simula las caídas de potencial en la célula a través de elementos como resistencias y capacitancias. Estos elementos representas pérdidas y limitaciones en los procesos químicos y físicos en la célula. Para la obtención de este circuito equivalente, se realiza una espectroscopia de impedancia electroquímica (en adelante EIS), que consiste en la identificación de los diferentes elementos a partir de los espectros de impedancia, resultantes de introducir señales de corriente alternas sinusoidales de frecuencia variable en la célula y observar la respuesta en la tensión. En la siguiente imagen se puede observar un ejemplo de la identificación de los parámetros del circuito equivalente en un espectro de impedancia. Al final del trabajo, se han realizado dos aplicaciones prácticas para comprobar la influencia de las características hidrófobas y morfológicas de los medios difusores en la gestión del agua en el cátodo y, por tanto, en el resultado eléctrico de la célula; y como aplicación práctica de las técnicas de construcción y análisis de las curvas de polarización y potencia y de la espectroscopia de impedancia electroquímica. El primer estudio práctico ha consistido en comprobar los beneficios de la inclusión de un MPL al GDL. Para ello se han caracterizado células funcionando con GDL y GDM (GDL+MPL) tratados con dos tipos diferentes de polímeros, PTFE y PFPE. Además se han realizado las pruebas para diferentes condiciones de funcionamiento, a saber, temperaturas de 60 y 80°C y niveles de humidificación relativa de los gases reactivos de 80%-60% y 80%- 100% (A-C). Se ha comprobado con las curvas de polarización y potencia, cómo la inclusión de un MPL en el lado activo del GDL reporta una mejora del funcionamiento de trabajo en todas las condiciones estudiadas. Esta mejora se hace más patente para altas densidades de corriente, cuando la gestión del agua resulta más crítica, y a bajas temperaturas ya que un menor porcentaje del agua producida se encuentra en estado de vapor, produciéndose inundaciones con mayor facilidad. El segundo estudio realizado trata de la influencia del agente hidrofobizante utilizado en los GDMs. Se pretende comprobar si algún otro polímero de los estudiados, mejora las prestaciones del comúnmente utilizado PTFE. Para ello se han caracterizado células trabajando en diferentes condiciones de trabajo (análogas a las del primer estudio) con GDMs tratados con PTFE, PFPE, FEP y PFA. Tras el análisis de las curvas de polarización y potencia, se observa un gran comportamiento del FEP para todas las condiciones de trabajo, aumentando el potencial de la célula para cada densidad de corriente respecto al PTFE y retrasando la densidad de corriente límite. El PFPE también demuestra un gran aumento del potencial y la densidad de potencia de la célula, aunque presenta mayores problemas de difusión a altas densidades de corriente. Los resultados del PFA evidencian sus problemas en la gestión del agua a altas densidades de corriente, especialmente para altas temperaturas. El análisis de los espectros de impedancia obtenidos con la EIS confirma los resultados de las curvas de polarización y evidencian que la mejor alternativa al PTFE para el tratamiento del GDM es el FEP, que por sus mejores características hidrófobas reduce las pérdidas por concentración con una mejor gestión del agua en el cátodo.