5 resultados para overlapping community detection
em Universidad Politécnica de Madrid
Resumo:
En esta tesis se aborda la detección y el seguimiento automático de vehículos mediante técnicas de visión artificial con una cámara monocular embarcada. Este problema ha suscitado un gran interés por parte de la industria automovilística y de la comunidad científica ya que supone el primer paso en aras de la ayuda a la conducción, la prevención de accidentes y, en última instancia, la conducción automática. A pesar de que se le ha dedicado mucho esfuerzo en los últimos años, de momento no se ha encontrado ninguna solución completamente satisfactoria y por lo tanto continúa siendo un tema de investigación abierto. Los principales problemas que plantean la detección y seguimiento mediante visión artificial son la gran variabilidad entre vehículos, un fondo que cambia dinámicamente debido al movimiento de la cámara, y la necesidad de operar en tiempo real. En este contexto, esta tesis propone un marco unificado para la detección y seguimiento de vehículos que afronta los problemas descritos mediante un enfoque estadístico. El marco se compone de tres grandes bloques, i.e., generación de hipótesis, verificación de hipótesis, y seguimiento de vehículos, que se llevan a cabo de manera secuencial. No obstante, se potencia el intercambio de información entre los diferentes bloques con objeto de obtener el máximo grado posible de adaptación a cambios en el entorno y de reducir el coste computacional. Para abordar la primera tarea de generación de hipótesis, se proponen dos métodos complementarios basados respectivamente en el análisis de la apariencia y la geometría de la escena. Para ello resulta especialmente interesante el uso de un dominio transformado en el que se elimina la perspectiva de la imagen original, puesto que este dominio permite una búsqueda rápida dentro de la imagen y por tanto una generación eficiente de hipótesis de localización de los vehículos. Los candidatos finales se obtienen por medio de un marco colaborativo entre el dominio original y el dominio transformado. Para la verificación de hipótesis se adopta un método de aprendizaje supervisado. Así, se evalúan algunos de los métodos de extracción de características más populares y se proponen nuevos descriptores con arreglo al conocimiento de la apariencia de los vehículos. Para evaluar la efectividad en la tarea de clasificación de estos descriptores, y dado que no existen bases de datos públicas que se adapten al problema descrito, se ha generado una nueva base de datos sobre la que se han realizado pruebas masivas. Finalmente, se presenta una metodología para la fusión de los diferentes clasificadores y se plantea una discusión sobre las combinaciones que ofrecen los mejores resultados. El núcleo del marco propuesto está constituido por un método Bayesiano de seguimiento basado en filtros de partículas. Se plantean contribuciones en los tres elementos fundamentales de estos filtros: el algoritmo de inferencia, el modelo dinámico y el modelo de observación. En concreto, se propone el uso de un método de muestreo basado en MCMC que evita el elevado coste computacional de los filtros de partículas tradicionales y por consiguiente permite que el modelado conjunto de múltiples vehículos sea computacionalmente viable. Por otra parte, el dominio transformado mencionado anteriormente permite la definición de un modelo dinámico de velocidad constante ya que se preserva el movimiento suave de los vehículos en autopistas. Por último, se propone un modelo de observación que integra diferentes características. En particular, además de la apariencia de los vehículos, el modelo tiene en cuenta también toda la información recibida de los bloques de procesamiento previos. El método propuesto se ejecuta en tiempo real en un ordenador de propósito general y da unos resultados sobresalientes en comparación con los métodos tradicionales. ABSTRACT This thesis addresses on-road vehicle detection and tracking with a monocular vision system. This problem has attracted the attention of the automotive industry and the research community as it is the first step for driver assistance and collision avoidance systems and for eventual autonomous driving. Although many effort has been devoted to address it in recent years, no satisfactory solution has yet been devised and thus it is an active research issue. The main challenges for vision-based vehicle detection and tracking are the high variability among vehicles, the dynamically changing background due to camera motion and the real-time processing requirement. In this thesis, a unified approach using statistical methods is presented for vehicle detection and tracking that tackles these issues. The approach is divided into three primary tasks, i.e., vehicle hypothesis generation, hypothesis verification, and vehicle tracking, which are performed sequentially. Nevertheless, the exchange of information between processing blocks is fostered so that the maximum degree of adaptation to changes in the environment can be achieved and the computational cost is alleviated. Two complementary strategies are proposed to address the first task, i.e., hypothesis generation, based respectively on appearance and geometry analysis. To this end, the use of a rectified domain in which the perspective is removed from the original image is especially interesting, as it allows for fast image scanning and coarse hypothesis generation. The final vehicle candidates are produced using a collaborative framework between the original and the rectified domains. A supervised classification strategy is adopted for the verification of the hypothesized vehicle locations. In particular, state-of-the-art methods for feature extraction are evaluated and new descriptors are proposed by exploiting the knowledge on vehicle appearance. Due to the lack of appropriate public databases, a new database is generated and the classification performance of the descriptors is extensively tested on it. Finally, a methodology for the fusion of the different classifiers is presented and the best combinations are discussed. The core of the proposed approach is a Bayesian tracking framework using particle filters. Contributions are made on its three key elements: the inference algorithm, the dynamic model and the observation model. In particular, the use of a Markov chain Monte Carlo method is proposed for sampling, which circumvents the exponential complexity increase of traditional particle filters thus making joint multiple vehicle tracking affordable. On the other hand, the aforementioned rectified domain allows for the definition of a constant-velocity dynamic model since it preserves the smooth motion of vehicles in highways. Finally, a multiple-cue observation model is proposed that not only accounts for vehicle appearance but also integrates the available information from the analysis in the previous blocks. The proposed approach is proven to run near real-time in a general purpose PC and to deliver outstanding results compared to traditional methods.
Resumo:
Diffusion controls the gaseous transport process in soils when advective transport is almost null. Knowledge of the soil structure and pore connectivity are critical issues to understand and modelling soil aeration, sequestration or emission of greenhouse gasses, volatilization of volatile organic chemicals among other phenomena. In the last decades these issues increased our attention as scientist have realize that soil is one of the most complex materials on the earth, within which many biological, physical and chemical processes that support life and affect climate change take place. A quantitative and explicit characterization of soil structure is difficult because of the complexity of the pore space. This is the main reason why most theoretical approaches to soil porosity are idealizations to simplify this system. In this work, we proposed a more realistic attempt to capture the complexity of the system developing a model that considers the size and location of pores in order to relate them into a network. In the model we interpret porous soils as heterogeneous networks where pores are represented by nodes, characterized by their size and spatial location, and the links representing flows between them. In this work we perform an analysis of the community structure of porous media of soils represented as networks. For different real soils samples, modelled as heterogeneous complex networks, spatial communities of pores have been detected depending on the values of the parameters of the porous soil model used. These types of models are named as Heterogeneous Preferential Attachment (HPA). Developing an exhaustive analysis of the model, analytical solutions are obtained for the degree densities and degree distribution of the pore networks generated by the model in the thermodynamic limit and shown that the networks exhibit similar properties to those observed in other complex networks. With the aim to study in more detail topological properties of these networks, the presence of soil pore community structures is studied. The detection of communities of pores, as groups densely connected with only sparser connections between groups, could contribute to understand the mechanisms of the diffusion phenomena in soils.
Resumo:
Soil is well recognized as a highly complex system. The interaction and coupled physical, chemical, and biological processes and phenomena occurring in the soil environment at different spatial and temporal scales are the main reasons for such complexity. There is a need for appropriate methodologies to characterize soil porous systems with an interdisciplinary character. Four different real soil samples, presenting different textures, have been modeled as heterogeneous complex networks, applying a model known as the heterogeneous preferential attachment. An analytical study of the degree distributions in the soil model shows a multiscaling behavior in the connectivity degrees, leaving an empirically testable signature of heterogeneity in the topology of soil pore networks. We also show that the power-law scaling in the degree distribution is a robust trait of the soil model. Last, the detection of spatial pore communities, as densely connected groups with only sparser connections between them, has been studied for the first time in these soil networks. Our results show that the presence of these communities depends on the parameter values used to construct the network. These findings could contribute to understanding the mechanisms of the diffusion phenomena in soils, such as gas and water diffusion, development and dynamics of microorganisms, among others.
Resumo:
The popularity of MapReduce programming model has increased interest in the research community for its improvement. Among the other directions, the point of fault tolerance, concretely the failure detection issue seems to be a crucial one, but that until now has not reached its satisfying level. Motivated by this, I decided to devote my main research during this period into having a prototype system architecture of MapReduce framework with a new failure detection service, containing both analytical (theoretical) and implementation part. I am confident that this work should lead the way for further contributions in detecting failures to any NoSQL App frameworks, and cloud storage systems in general.
Resumo:
The installers and owners show a growing interest in the follow-up of the performance of their photovoltaic (PV) systems. The owners are requesting reliable sources of information to ensure that their system is functioning properly, and the installers are actively looking for efficient ways of providing them the most useful possible information from the data available. Policy makers are becoming increasingly interested in the knowledge of the real performance of PV systems and the most frequent sources of problems that they suffer to be able to target the identified challenges properly. The scientific and industrial PV community is also requiring an access to massive operational data to pursue the technological improvements further.