18 resultados para otolith microstructure

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regenerated silkworm fibers spun through a wet-spinning process followed by an immersion postspinning drawing step show a work to fracture comparable with that of natural silkworm silk fibers in a wide range of spinning conditions. The mechanical behavior and microstructure of these high performance fibers have been characterized, and compared with those fibers produced through conventional spinning conditions. The comparison reveals that both sets of fibers share a common semicrystalline microstructure, but significant differences are apparent in the amorphous region. Besides, high performance fibers show a ground state and the possibility of tuning their tensile behavior. These properties are characteristic of spider silk and not of natural silkworm silk, despite both regenerated and natural silkworm silk share a common composition different from that of spider silk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, the electronic industry demands small and complex parts as a consequence of the miniaturization of electronic devices. Powder injection moulding (PIM) is an emerging technique for the manufacturing of magnetic ceramics. In this paper, we analyze the sintering process, between 900 °C and 1300 °C, of Ni–Zn ferrites prepared by PIM. In particular, the densification behaviour, microstructure and mechanical properties of samples with toroidal and bar geometry were analyzed at different temperatures. Additionally, the magnetic behaviour (complex permeability and magnetic losses factor) of these compacts was compared with that of samples prepared by conventional powder compaction. Finally, the mechanical behaviour (elastic modulus, flexure strength and fracture toughness) was analyzed as a function of the powder loading of feedstock. The final microstructure of prepared samples was correlated with the macroscopic behaviour. A good agreement was established between the densities and population of defects found in the materials depending on the sintering conditions. In general, the final mechanical and magnetic properties of PIM samples were enhanced relative those obtained by uniaxial compaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The advent of new signal processing methods, such as non-linear analysis techniques, represents a new perspective which adds further value to brain signals' analysis. Particularly, Lempel–Ziv's Complexity (LZC) has proven to be useful in exploring the complexity of the brain electromagnetic activity. However, an important problem is the lack of knowledge about the physiological determinants of these measures. Although acorrelation between complexity and connectivity has been proposed, this hypothesis was never tested in vivo. Thus, the correlation between the microstructure of the anatomic connectivity and the functional complexity of the brain needs to be inspected. In this study we analyzed the correlation between LZC and fractional anisotropy (FA), a scalar quantity derived from diffusion tensors that is particularly useful as an estimate of the functional integrity of myelinated axonal fibers, in a group of sixteen healthy adults (all female, mean age 65.56 ± 6.06 years, intervals 58–82). Our results showed a positive correlation between FA and LZC scores in regions including clusters in the splenium of the corpus callosum, cingulum, parahipocampal regions and the sagittal stratum. This study supports the notion of a positive correlation between the functional complexity of the brain and the microstructure of its anatomical connectivity. Our investigation proved that a combination of neuroanatomical and neurophysiological techniques may shed some light on the underlying physiological determinants of brain's oscillations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of cooling rate on the microstructure of MAR-M247 Ni-based superalloy was investigated via physical simulation of the casting process. Solidification experiments with cooling rates in the range of 0.25–10 K/s showed smooth temperature profiles with measured cooling rates matching the set values. The MAR-M247 showed cellular (0.25 K/s) and dendritic (1, 5 and 10 K/s) microstructures. Microconstituents also varied with cooling rates: γ/γ′ matrix with carbides and γ/γ′ eutectic at 0.25 K/s, γ/γ′ matrix with carbides at 1 K/s, and γ/γ′ matrix with carbides and γ/MC eutectic at 5 and 10 K/s. Moreover, the secondary dendritic arm spacing decreased and the hardness increased with the increase in the cooling rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling and prediction of the overall elastic–plastic response and local damage mechanisms in heterogeneous materials, in particular particle reinforced composites, is a very complex problem. Microstructural complexities such as the inhomogeneous spatial distribution of particles, irregular morphology of the particles, and anisotropy in particle orientation after secondary processing, such as extrusion, significantly affect deformation behavior. We have studied the effect of particle/matrix interface debonding in SiC particle reinforced Al alloy matrix composites with (a) actual microstructure consisting of angular SiC particles and (b) idealized ellipsoidal SiC particles. Tensile deformation in SiC particle reinforced Al matrix composites was modeled using actual microstructures reconstructed from serial sectioning approach. Interfacial debonding was modeled using user-defined cohesive zone elements. Modeling with the actual microstructure (versus idealized ellipsoids) has a significant influence on: (a) localized stresses and strains in particle and matrix, and (b) far-field strain at which localized debonding takes place. The angular particles exhibited higher degree of load transfer and are more sensitive to interfacial debonding. Larger decreases in stress are observed in the angular particles, because of the flat surfaces, normal to the loading axis, which bear load. Furthermore, simplification of particle morphology may lead to erroneous results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CaCu3Ti4O12 (CCTO) was prepared by a conventional synthesis (CS) and through reaction sintering, in which synthesis and sintering of the material take place in one single step. The microstructure and the dielectric properties of CCTO have been studied by XRD, FE-SEM, EDS, AFM, and impedance spectroscopy to correlate structure, microstructure, and electrical properties. Samples prepared by reactive sintering show very similar dielectric behavior to those prepared by CS. Therefore, it is possible to prepare CCTO by means of a single-step processing method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of quasi-static and dynamic tensile tests at varying temperatures were carried out to determine the mechanical behaviour of Ti-45Al-2Nb-2Mn+0.8vol.% TiB2 XD as-HIPed alloy. The temperature for the tests ranged from room temperature to 850  ∘C. The effect of the temperature on the ultimate tensile strength, as expected, was almost negligible within the selected temperature range. Nevertheless, the plastic flow suffered some softening because of the temperature. This alloy presents a relatively low ductility; thus, a low tensile strain to failure. The dynamic tests were performed in a Split Hopkinson Tension Bar, showing an increase of the ultimate tensile strength due to the strain rate hardening effect. Johnson-Cook constitutive relation was used to model the plastic flow. A post-testing microstructural of the specimens revealed an inhomogeneous structure, consisting of lamellar α2 + γ structure and γ phase equiaxed grains in the centre, and a fully lamellar structure on the rest. The assessment of the duplex-fully lamellar area ratio showed a clear relationship between the microstructure and the fracture behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physico-chemical and organoleptic characteristics of food depend largely on the microscopic level distribution of gases and water, and connectivity and mobility through the pores. Microstructural characterization of food can be accomplished by Magnetic Resonance Imaging (MRI) and Nuclear Magnetic Spectroscopy (NMR) combined with the application of methods of dissemination and multidimensional relaxometry. In this work, funded by the EC Project InsideFood, several artificial food models, based on foams and gels were studied using MRI and 2D relaxometry. Two different kinds of foams were used: a sugarless and a sugar foam. Then, a half of a syringe was filled with the sugarless foam and the other half with the sugar foam. Then, MRI and NMR experiments were performed and the sample evolution was observed along 3 days in order to quantify macrostructural changes through proton density images and microstructural ones using T1T2 maps, using an inversion CPMG sequence. On the proton density images it may be seen that after 16 hours it was possible to differentiate the macrostructural changes, as the apparition of free water due to a syneresis phenomenon. On the interface it can be seen a brighter area after 16 hours, due to the occurrence of free water. Moreover, thanks to the bidimensional relaxometry (T1-T2) it was possible to differentiate among microscopic changes. Differences between the pores size can be observed as well as the microstructure evolution after 30.5 hours, as a consequence differences are shown on free water redistribution through larger pores and capillarity phenomena between both foams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnCdO nanowires with up to 45% Cd are demonstrated showing room temperature photoluminescence (PL) down to 2.02 eV and a radiative efficiency similar to that of ZnO nanowires. Analysis of the microstructure in individual nanowires confirms the presence of a single wurtzite phase even at the highest Cd contents, with a homogeneous distribution of Cd both in the longitudinal and transverse directions. Thermal annealing at 550 °C yields an overall improvement of the PL, which is blue-shifted as a result of the homogeneous decrease of Cd throughout the nanowire, but the single wurtzite structure is fully maintained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-length ultrafine-grained (UFG) Ti rods are produced by equal-channel angular pressing via the conform scheme (ECAP-C) at 200 °C, which is followed by drawing at 200 °C. The evolution of microstructure, macrotexture, and mechanical properties (yield strength, ultimate tensile strength, failure stress, uniform elongation, elongation to failure) of pure Ti during this thermo-mechanical processing is studied. Special attention is also paid to the effect of microstructure on the mechanical behavior of the material after macrolocalization of plastic flow. The number of ECAP-C passes varies in the range of 1–10. The microstructure is more refined with increasing number of ECAP-C passes. Formation of homogeneous microstructure with a grain/subgrain size of 200 nm and its saturation after 6 ECAP-C passes are observed. Strength properties increase with increasing number of ECAP passes and saturate after 6 ECAP-C passes to a yield strength of 973 MPa, an ultimate tensile strength of 1035 MPa, and a true failure stress of 1400 MPa (from 625, 750, and 1150 MPa in the as-received condition). The true strain at failure failure decreases after ECAP-C processing. The reduction of area and true strain to failure values do not decrease after ECAP-C processing. The sample after 6 ECAP-C passes is subjected to drawing at 200¯C resulting in reduction of a grain/subgrain size to 150 nm, formation of (10 View the MathML source1¯0) fiber texture with respect to the rod axis, and further increase of the yield strength up to 1190 MPa, the ultimate tensile strength up to 1230 MPa and the true failure stress up to 1600 MPa. It is demonstrated that UFG CP Ti has low resistance to macrolocalization of plastic deformation and high resistance to crack formation after necking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research is an exhaustive study of the microstructure and of the stress-strain curves of structural steel S460N at temperatures typical of a fire. It includes a fractographic study of the fracture suifaces of cylindrical specimens, tensile tested at different fire scenarios, explaining the relationship between the failure micromechanisms and temperature. The paper ends with the comparison between the experimentally found strain-stress curves with that one's proposed by the EUROCODE EC3, resulting that in the case of steel S460N these are on the side ofsafety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the challenges of science and engineering nowadays is to develop new ways to supply energy in a sustainable and ecological mode. The fussion energy could be the final answer but a myriad of problems must be solved previously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The EFDA-ITER programme for materials wants to develop new structural materials for future nuclear magnetic fusion reactors. In this context, special attention must be paid in the development of new composite materials that could support the hard working conditions of the nuclear fusion reactors: high temperature, high stresses, and high radiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research is an exhaustive study of the microstructure and of the stress-strain curves of structural steel S460N at temperatures typical of a fire. It includes a fractographic study of the fracture suifaces of cylindrical specimens, tensile tested at different fire scenarios, explaining the relationship between the failure micromechanisms and temperature. The paper ends with the comparison between the experimentally found strain-stress curves with that one's proposed by the EUROCODE EC3, resulting that in the case of steel S460N these are on the side ofsafety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apples can be considered as having a complex system formed by several structures at different organization levels: macroscale (mayor que100 ?m) and microscale (menor que100 ?m). This work implements 2D T1/T2 global and localized relaxometry sequences on whole apples to be able to perform an intensive non-destructive and non-invasive microstructure study. The 2D T1/T2 cross-correlation spectroscopy allows the extraction of quantitative information about the water compartmentation in different subcellular organelles. A clear difference is found as sound apples show neat peaks for water in different subcellular compartments, such as vacuolar, cytoplasmatic and extracellular water, while in watercore-affected tissues such compartments appear merged. Localized relaxometry allows for the predefinition of slices in order to understand the microstructure of a particular region of the fruit, providing information that cannot be derived from global 2D T1/T2 relaxometry.