5 resultados para osmotic water permeability
em Universidad Politécnica de Madrid
Resumo:
High performance materials are needed for the reconstruction of such a singular building as a cathedral, since in addition to special mechanical properties, high self compact ability, high durability and high surface quality, are specified. Because of the project’s specifications, the use of polypropylene fiber-reinforced, self-compacting concrete was selected by the engineering office. The low quality of local materials and the lack of experience in applying macro polypropylene fiber for structural reinforcement with these components materials required the development of a pretesting program. To optimize the mix design, performance was evaluated following technical, economical and constructability criteria. Since the addition of fibers reduces concrete self-compactability, many trials were run to determine the optimal mix proportions. The variables introduced were paste volume; the aggregate skeleton of two or three fractions plus limestone filler; fiber type and dosage. Two mix designs were selected from the preliminary results. The first one was used as reference for self-compactability and mechanical properties. The second one was an optimized mix with a reduction in cement content of 20 kg/m3and fiber dosage of 1 kg/m3. For these mix designs, extended testing was carried out to measure the compression and flexural strength, modulus of elasticity, toughness, and water permeability resistance
Resumo:
El objetivo principal de este trabajo es profundizar en el conocimiento del fenómeno de la corrosión subpelicular inducida por contaminantes hidrosolubles en la intercara metal/pintura. La contaminación salina del substrato es una situación común en la práctica: la superficie metálica suele estar expuesta a atmósferas contaminadas antes de ser recubierta, limpieza previa del metal con abrasivos contaminados, etc. La eliminación total de estos contaminantes resulta muy difícil de conseguir incluso con las técnicas más sofisticadas de limpieza. Esta investigación se centra en la determinación del efecto de la naturaleza del contaminante y la naturaleza y espesor del recubrimiento en el proceso de corrosión subpelicular del acero. En la investigación se utilizaron dos barnices de naturaleza diferente: poliuretano y vinílico; y se aplicaron a tres espesores diferentes. Los contaminantes empleados en este trabajo fueron: NaCl, NH4C1, CaCl2, Na2S04, (NH4)2S04, NaN03, NH4N03, Ca(N03)2. Los ensayos se realizaron en una cámara de condensación de humedad permanente. Los tiempos de exposición fueron 100, 300 y 600 horas. La velocidad de corrosión se evaluó gravimétricamente, mediante la técnica de pérdida de peso. Se realizaron estudios de permeabilidad al oxígeno y al agua de películas libres de substrato, evaluación de la velocidad de corrosión de probetas sin pintar inmersas en soluciones salinas de los contaminantes seleccionados, conductividad de dichas soluciones salinas, solubilidad del oxígeno en las soluciones salinas, adherencia en seco y en húmedo a diferentes tiempos de exposición. Se aporta evidencia respecto al control ejercido en el proceso corrosivo por el oxígeno que permea a través de la película, mientras que la permeación de agua controla la pérdida de adherencia del recubrimiento. Ambas permeabilidades dependen de la naturaleza del recubrimiento y de su espesor. Se ha investigado la influencia de la naturaleza del contaminante en la intercara metal/pintura. La naturaleza del catión parece quedar enmascarada por el efecto definitivo del anión. La concentración salina ejerce asimismo un efecto importante en la corrosión subpelicular. ABSTRACT The main aim of this work is to study in depth the knowledge of underfilm corrosión induced by hydrosoluble contaminants at the metal/paint Ínterface. The saline contamination of the substrate is a common situation in practice: metallic surfaces use to be exposed to polluted atmospheres, previous cleaning of the metal with contaminated abrasives, etc. Total elimination of these contaminants is hard to obtain even with modern cleaning techniques. This research is focused in determining the effect of contaminant nature, coating nature and its thickness on the steel underfilm corrosión process. In this work we used two varnishes with different nature: polyurethane and vinyl; they were applied in three different thicknesses. The saline contaminants employed were: NaCl, NH4C1, CaCl2, Na2S04, (NH4)2S04, NaN03, NH4N03/ Ca(N03)2. The tests were carried out in a condensation humidity chamber. The period of exposure were 100, 300 and 600 hours. Corrosión rate was assessed by weight loss. Simultaneously, studies on oxygen and water permeability of free films, assessing on corrosión rate of uncoated samples immersed in saline solutions of the selected contaminants, conductivity of these solutions, oxygen solubility in saline solutions, wet and dry adhesión of the polyurethane varnish at different periods of exposure, were carried out. There is clear evidence about control on corrosión process of oxygen that passes through the coating, while the passing of water controls the loss of adhesión of the coating. Both, water and oxygen permeation, depend on the nature and thickness of the coating. It has been researched the inf luence of the nature of contaminant at the metal/paint interface. The nature of the catión seems to be "masked" by the definitive effect of the nature of anión. The saline concentration also exerts an important effect on underfilm corrosión.
Resumo:
Past studies of water stress in Eucalyptus spp. generally highlighted the role of fewer than five “important” metabolites, whereas recent metabolomic studies on other genera have shown tens of compounds are affected. There are currently no metabolite profiling data for responses of stress-tolerant species to water stress. We used GC–MS metabolite profiling to examine the response of leaf metabolites to a long (2 month) and severe (Ψpredawn < −2 MPa) water stress in two species of the perennial tree genus Eucalyptus (the mesic Eucalyptus pauciflora and the semi-arid Eucalyptus dumosa). Polar metabolites in leaves were analysed by GC–MS and inorganic ions by capillary electrophoresis. Pressure–volume curves and metabolite measurements showed that water stress led to more negative osmotic potential and increased total osmotically active solutes in leaves of both species. Water stress affected around 30–40% of measured metabolites in E. dumosa and 10–15% in E. pauciflora. There were many metabolites that were affected in E. dumosa but not E. pauciflora, and some that had opposite responses in the two species. For example, in E. dumosa there were increases in five acyclic sugar alcohols and four low-abundance carbohydrates that were unaffected by water stress in E. pauciflora. Re-watering increased osmotic potential and decreased total osmotically active solutes in E. pauciflora, whereas in E. dumosa re-watering led to further decreases in osmotic potential and increases in total osmotically active solutes. This experiment has added several extra dimensions to previous targeted analyses of water stress responses in Eucalyptus, and highlights that even species that are closely related (e.g. congeners) may respond differently to water stress and re-watering
Resumo:
The mycelial growth of 18 Fusarium solani strains isolated from sea beds of the south-eastern coast of Spain was tested on potato-dextrose agar adjusted to different osmotic potentials with either KCl or NACl (-1.50 to -144.54 bars) in 10ºC intervals ranging from 15 to 35ºC. Fungal growth was determined by measuring colony diameter after 4 days incubation. Mycelial growth was maximal at 25ºC. The quantity and frequency pattern of mycelial growth of F. solani differ significantly at 15 and 25ºC, with maximal occurring at the highest water potential tested (-1.50 bars); and at 35ºC, with a maximal mycelial growth at -13.79 bars. The effect of water potential was independent of salt composition. The general growth pattern of F. solani showed declining growth at potentials below -41.79 bars. Fungal growth at 35ºC was always higher than that growth at 15ºC, of all the water potentials tested. Significant differences observed in the response of mycelia to water potential and temperature as main and interactive effects. The viability of cultures was increasingly inhibited as the water potential dropped, but some growth was still observed at -99.56 bars. These findings could indicate that marine strains of F. solani have a physiological mechanism that permits survival in environments with low water potential. The observed differences in viability and the magnitude growth could indicate that the biological factors governing potential and actual growth are affected by osmotic potential in different ways.
Resumo:
The mycelial growth of 10 Fusarium culmorum strains isolated from water of the Andarax riverbed in the provinces of Granada and Almeria in southeastern Spain was tested on potato-dextroseagar adjusted to different osmotic potentials with either KCl or NaCl (−1.50 to−144.54 bars) at 10◦C intervals ranging from15◦ to 35◦C. Fungal growth was determined by measuring colony diameter after 4 d of incubation. Mycelial growth was maximal at 25◦C. The quantity and capacity of mycelial growth of F. culmorum were similar at 15 and 25◦C, with maximal growth occurring at −13.79 bars water potential and a lack of growth at 35◦C. The effect of water potential was independent of salt composition. The general growth pattern of Fusarium culmorum growth declined at potentials below −13.79 bars. Fungal growth at 25◦C was always greater than growth at 15◦C, at all of the water potentials tested. Significant differences were observed in the response ofmycelia to water potential and temperature as main and interactive effects. The number of isolates that showed growth was increasingly inhibited as the water potential dropped, but some growth was still observable at −99.56 bars. These findings could indicate that F. culmorum strains isolated from water have a physiological mechanism that permits survival in environments with low water potential. Propagules of Fusarium culmorum are transported long distances by river water, which could explain the severity of diseases caused by F.culmorum on cereal plants irrigated with river water and its interaction under hydric stress ormoderate soil salinity. The observed differences in growth magnitude and capacity could indicate that the biological factors governing potential and actual growth are affected by osmotic potential in different ways.