3 resultados para orthogonal memory patterns
em Universidad Politécnica de Madrid
Resumo:
One of the main causes for age-related declines in working memory is a higher vulnerability to retroactive interference due to a reduced ability to suppress irrelevant information. However, the underlying neural correlates remain to be established. Magnetoencephalography was used to investigate differential neural patterns in young and older adults performing an interference-based memory task with two experimental conditions, interrupting and distracting, during successful recognition. Behaviorally, both types of retroactive interference significantly impaired accuracy at recognition more in older adults than in young adults with the latter exhibiting greater disruptions by interrupters. Magnetoencephalography revealed the presence of differential age-related neural patterns. Specifically, time-modulated activations in temporo-occipital and superior parietal regions were higher in young adults compared with older adults for the interrupting condition. These results suggest that age-related deficits in inhibitory mechanisms that increase vulnerability to retroactive interference may be associated with neural under-recruitments in a high-interference task.
Resumo:
An innovative dissipative multi-beam network for triangular arrays of three radiating elements is proposed. This novel network provides three orthogonal beams in θ0 elevation angle and a fourth one in the broadside steering direction. The network is composed of 90º hybrid couplers and fixed phase shifters. In this paper, a relation between network components, radiating element distance and beam steering directions will be shown. Application of the proposed dissipative network to the triangular cells of three radiating elements that integrate the intelligent antenna GEODA will be exhibited. This system works at 1.7 GHz, it has a 60º single radiating element beamwidth and a distance between array elements of 0.57 λ. Both beam patterns, theoretical and simulated, obtained with the network will be depicted. Moreover, the whole system, dissipative network built with GEODA cell array, has been measured in the anechoic chamber of the Radiation Group of Technical University of Madrid, demonstrating expected performance.
Resumo:
Alteration of brain communication due to abnormal patterns of synchronization is nowadays one of the most suitable mechanisms for having a better understanding of brain pathologies. Very recently, it has been proved that abnormal changes in both local and long range functional interactions underlie the cognitive deficits associated with different brain disorders. Mild cognitive impairment (MCI) is a state characterized for cognitive dysfunction, such as the memory. The study of the spatial and dynamic alterations in MCI subjects' functional networks could provide important evidences of the brain mechanisms responsible for such impairment.