5 resultados para ore dressing

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Esperanza Zn-Pb-Ag vein, owned by Compañía de Minas Buenaventura S.A.A., lies over 4000 to 4650 masl in the Western Cordillera of the Peruvian Central Andes. The Esperanza low sulphidation epithermal vein trends ~E-W along 1500 m; it dips to the South and can be followed to 350 m depth. As other veins of the district, like Teresita and Bienaventurada, it is hosted by intermediate to felsic volcanics (andesitic to dacitic compositions) of the Huachocolpa Group (Middle Miocene to Upper Pliocene). The mineralisation occurs mostly as open space filling related to fracture development during the Quechua III deformational event. Main ore minerals are sphalerite, galena, tetrahedrite, pyrite, chalcopyrite and Ag and Pb sulfosalts; quartz, barite and calcite are the main gangue minerals. Current production grades are ~5% Zn, ~8Oz/t Ag, ~3% Pb; usually very low Cu (mean ~0.04%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mining in the Iberian Pyrite Belt (IPB), the biggest VMS metallogenetic province known in the world to date, has to face a deep crisis in spite of the huge reserves still known after ≈5 000 years of production. This is due to several factors, as the difficult processing of complex Cu-Pb-Zn-Ag- Au ores, the exhaustion of the oxidation zone orebodies (the richest for gold, in gossan), the scarce demand for sulphuric acid in the world market, and harder environmental regulations. Of these factors, only the first and the last mentioned can be addressed by local ore geologists. A reactivation of mining can therefore only be achieved by an improved and more efficient ore processing, under the constraint of strict environmental controls. Digital image analysis of the ores, coupled to reflected light microscopy, provides a quantified and reliable mineralogical and textural characterization of the ores. The automation of the procedure for the first time furnishes the process engineers with real-time information, to improve the process and to preclude or control pollution; it can be applied to metallurgical tailings as well. This is shown by some examples of the IPB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is part of the project CAMEVA for the development of an expert system aimed at the automatic identification of ores [1, 2]. It relies on the measure of their reflectance values, R, on digital images. Software for calibration, acquisition and analysis of the multispectral data was designed by AITEMIN [3]; the research was also assessed by H.J. Bernhardt and E. Pirard [1].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A joint research to develop an efficient method for automated identification and quantification of ores [1], based on Reflected Light Microscopy (RLM) in the VNIR realm (Fig. 1), provides an alternative to modern SEM based equipments used by geometallurgists, but for ~ 1/10th of the price.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se investiga la compleja mineralogía del Yacimiento de Pallancata (6º productor de plata del mundo) y se establecen las condiciones de formación (P.T) basadas en la petrología de las menas comparada con los datos de mineralogía experimental y en la petrografía y microtermometría de inclusiones fluídas en la ganga silicatada, resultando un depósito típicamente caracterizado como epitermal de sulfuración intermedia.ABSTRACT:Pallancata is a world-class intermediate-sulfidation epithermal deposit, hosted by upper Miocene volcanics of the south-central Peruvian Andes in a sinuous N70ºW, ∼75º SW strike-slip structure, with wide (up to 35 m) pull-apart dilation zones related to bends of the vein strike. The structural evolution of the vein from earlier brecciation to later open space infill resembles the Shila Paula district (Chauvet et al. 2006). Fluid inclusion petrography and microthermometry show that ore deposition is related to protracted boiling of very diluted, mainly meteoric fluids, starting at 250–260 ºC, under ∼300 m hydrostatic head. The mineralogical-petrological study reveals a complex sequence of mineralization (eight stages) and mineral reactions consistent with Ag2S enrichment or Sb2S3 depletion, or both, during cooling over the temperature range 250–200 ºC: pyrite, sphalerite, galena, miargyrite, pyrargyrite-proustite, chalcopyrite, polybasite-pearceite, argentite (now acanthite), and Au–Ag alloy (“electrum”). This Ag2S enrichment and Sb2S3depletion during cooling may be explained by decay of a Ag-rich galena precursor at deeper levels (Pb2S2–AgSbS2 solid solution), which rapidly becomes unstable with decreasing temperature, producing residual (stoichiometric) PbS and more mobile Ag and Sb sulfide phases, which migrated upward and laterally away from the thermal core of the system. The core is still undisclosed by mining works, but the available geochemical evidence (logAg/log Pb ratios decreasing at depth) is consistent with this interpretation, implying a deeper potential resource. Data from sulfide geothermometry, based on mineral equilibria, document the thermal evolution of the system below 200 ºC (stephanite, uytenbogaardtite, jalpaite, stromeyerite, mckinstryite, among others). The end of the most productive stages (3, 4, and 5) is marked by the precipitation of stephanite at temperatures below 197 ± 5 ºC, but precipitation of residual silver continues through the waning stages of the hydrothermal system down to <93.3 ºC (stromeyerite) or in a supergene redistribution (stage 8, acanthite II).