13 resultados para orbital remote sensing
em Universidad Politécnica de Madrid
Resumo:
The satellite remote sensing missions are essential for long-term research around the condition of the earth resources and environment. On the other hand, in recent years the application of microsatellites is of interest in many space programs for their less cost and response time. In microsatellite remote sensing missions there are tight interrelations between different requirements such as orbital altitude, revisit time, mission life and spatial resolution. Also, all of these requirements can affect the whole system level design characteristics. In this work, the remote sensing microsatellite sizing process is divided into three major design disciplines; a) orbit design, b) payload sizing and c) bus sizing. Finally, some specific design cases are investigated inside the design space for evaluating the effect of different design variables on the satellite total mass. Considering the results of the work, it is concluded that applying a systematic approach at the initial design phase of such projects provides a good insight to the not clearly seen interactions inside their highly extended design space
Resumo:
In this paper, a system that allows applying precision agriculture techniques is described. The application is based on the deployment of a team of unmanned aerial vehicles that are able to take georeferenced pictures in order to create a full map by applying mosaicking procedures for postprocessing. The main contribution of this work is practical experimentation with an integrated tool. Contributions in different fields are also reported. Among them is a new one-phase automatic task partitioning manager, which is based on negotiation among the aerial vehicles, considering their state and capabilities. Once the individual tasks are assigned, an optimal path planning algorithm is in charge of determining the best path for each vehicle to follow. Also, a robust flight control based on the use of a control law that improves the maneuverability of the quadrotors has been designed. A set of field tests was performed in order to analyze all the capabilities of the system, from task negotiations to final performance. These experiments also allowed testing control robustness under different weather conditions.
Resumo:
En la actualidad, el seguimiento de la dinámica de los procesos medio ambientales está considerado como un punto de gran interés en el campo medioambiental. La cobertura espacio temporal de los datos de teledetección proporciona información continua con una alta frecuencia temporal, permitiendo el análisis de la evolución de los ecosistemas desde diferentes escalas espacio-temporales. Aunque el valor de la teledetección ha sido ampliamente probado, en la actualidad solo existe un número reducido de metodologías que permiten su análisis de una forma cuantitativa. En la presente tesis se propone un esquema de trabajo para explotar las series temporales de datos de teledetección, basado en la combinación del análisis estadístico de series de tiempo y la fenometría. El objetivo principal es demostrar el uso de las series temporales de datos de teledetección para analizar la dinámica de variables medio ambientales de una forma cuantitativa. Los objetivos específicos son: (1) evaluar dichas variables medio ambientales y (2) desarrollar modelos empíricos para predecir su comportamiento futuro. Estos objetivos se materializan en cuatro aplicaciones cuyos objetivos específicos son: (1) evaluar y cartografiar estados fenológicos del cultivo del algodón mediante análisis espectral y fenometría, (2) evaluar y modelizar la estacionalidad de incendios forestales en dos regiones bioclimáticas mediante modelos dinámicos, (3) predecir el riesgo de incendios forestales a nivel pixel utilizando modelos dinámicos y (4) evaluar el funcionamiento de la vegetación en base a la autocorrelación temporal y la fenometría. Los resultados de esta tesis muestran la utilidad del ajuste de funciones para modelizar los índices espectrales AS1 y AS2. Los parámetros fenológicos derivados del ajuste de funciones permiten la identificación de distintos estados fenológicos del cultivo del algodón. El análisis espectral ha demostrado, de una forma cuantitativa, la presencia de un ciclo en el índice AS2 y de dos ciclos en el AS1 así como el comportamiento unimodal y bimodal de la estacionalidad de incendios en las regiones mediterránea y templada respectivamente. Modelos autorregresivos han sido utilizados para caracterizar la dinámica de la estacionalidad de incendios y para predecir de una forma muy precisa el riesgo de incendios forestales a nivel pixel. Ha sido demostrada la utilidad de la autocorrelación temporal para definir y caracterizar el funcionamiento de la vegetación a nivel pixel. Finalmente el concepto “Optical Functional Type” ha sido definido, donde se propone que los pixeles deberían ser considerados como unidades temporales y analizados en función de su dinámica temporal. ix SUMMARY A good understanding of land surface processes is considered as a key subject in environmental sciences. The spatial-temporal coverage of remote sensing data provides continuous observations with a high temporal frequency allowing the assessment of ecosystem evolution at different temporal and spatial scales. Although the value of remote sensing time series has been firmly proved, only few time series methods have been developed for analyzing this data in a quantitative and continuous manner. In the present dissertation a working framework to exploit Remote Sensing time series is proposed based on the combination of Time Series Analysis and phenometric approach. The main goal is to demonstrate the use of remote sensing time series to analyze quantitatively environmental variable dynamics. The specific objectives are (1) to assess environmental variables based on remote sensing time series and (2) to develop empirical models to forecast environmental variables. These objectives have been achieved in four applications which specific objectives are (1) assessing and mapping cotton crop phenological stages using spectral and phenometric analyses, (2) assessing and modeling fire seasonality in two different ecoregions by dynamic models, (3) forecasting forest fire risk on a pixel basis by dynamic models, and (4) assessing vegetation functioning based on temporal autocorrelation and phenometric analysis. The results of this dissertation show the usefulness of function fitting procedures to model AS1 and AS2. Phenometrics derived from function fitting procedure makes it possible to identify cotton crop phenological stages. Spectral analysis has demonstrated quantitatively the presence of one cycle in AS2 and two in AS1 and the unimodal and bimodal behaviour of fire seasonality in the Mediterranean and temperate ecoregions respectively. Autoregressive models has been used to characterize the dynamics of fire seasonality in two ecoregions and to forecasts accurately fire risk on a pixel basis. The usefulness of temporal autocorrelation to define and characterized land surface functioning has been demonstrated. And finally the “Optical Functional Types” concept has been proposed, in this approach pixels could be as temporal unities based on its temporal dynamics or functioning.
Resumo:
CO2 capture and storage (CCS) projects are presently developed to reduce the emission of anthropogenic CO2 into the atmosphere. CCS technologies are expected to account for the 20% of the CO2 reduction by 2050. Geophysical, ground deformation and geochemical monitoring have been carried out to detect potential leakage, and, in the event that this occurs, identify and quantify it. This monitoring needs to be developed prior, during and after the injection stage. For a correct interpretation and quantification of the leakage, it is essential to establish a pre-injection characterization (baseline) of the area affected by the CO2 storage at reservoir level as well as at shallow depth, surface and atmosphere, via soil gas measurements. Therefore, the methodological approach is important because it can affect the spatial and temporal variability of this flux and even jeopardize the total value of CO2 in a given area. In this sense, measurements of CO2 flux were done using portable infrared analyzers (i.e., accumulation chambers) adapted to monitoring the geological storage of CO2, and other measurements of trace gases, e.g. radon isotopes and remote sensing imagery were tested in the natural analogue of Campo de Calatrava (Ciudad Real, Spain) with the aim to apply in CO2 leakage detection; thus, observing a high correlation between CO2 and radon (r=0,858) and detecting some vegetation indices that may be successfully applied for the leakage detection.
Resumo:
In recent years, remote sensing imaging systems for the measurement of oceanic sea states have attracted renovated attention. Imaging technology is economical, non-invasive and enables a better understanding of the space-time dynamics of ocean waves over an area rather than at selected point locations of previous monitoring methods (buoys, wave gauges, etc.). We present recent progress in space-time measurement of ocean waves using stereo vision systems on offshore platforms, which focus on sea states with wavelengths in the range of 0.01 m to 1 m. Both traditional disparity-based systems and modern elevation-based ones are presented in a variational optimization framework: the main idea is to pose the stereoscopic reconstruction problem of the surface of the ocean in a variational setting and design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal smoothness priors. Disparity methods estimate the disparity between images as an intermediate step toward retrieving the depth of the waves with respect to the cameras, whereas elevation methods estimate the ocean surface displacements directly in 3-D space. Both techniques are used to measure ocean waves from real data collected at offshore platforms in the Black Sea (Crimean Peninsula, Ukraine) and the Northern Adriatic Sea (Venice coast, Italy). Then, the statistical and spectral properties of the resulting observed waves are analyzed. We show the advantages and disadvantages of the presented stereo vision systems and discuss future lines of research to improve their performance in critical issues such as the robustness of the camera calibration in spite of undesired variations of the camera parameters or the processing time that it takes to retrieve ocean wave measurements from the stereo videos, which are very large datasets that need to be processed efficiently to be of practical usage. Multiresolution and short-time approaches would improve efficiency and scalability of the techniques so that wave displacements are obtained in feasible times.
Resumo:
Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and play a significant role in the global cycles of carbon, nitrogen and water. The purpose of this study is to use field-based and satellite remote-sensing-based methods to assess leaf nitrogen pools in five diverse European agricultural landscapes located in Denmark, Scotland (United Kingdom), Poland, the Netherlands and Italy. REGFLEC (REGularized canopy reFLECtance) is an advanced image-based inverse canopy radiative transfer modelling system which has shown proficiency for regional mapping of leaf area index (LAI) and leaf chlorophyll (CHLl) using remote sensing data. In this study, high spatial resolution (10–20 m) remote sensing images acquired from the multispectral sensors aboard the SPOT (Satellite For Observation of Earth) satellites were used to assess the capability of REGFLEC for mapping spatial variations in LAI, CHLland the relation to leaf nitrogen (Nl) data in five diverse European agricultural landscapes. REGFLEC is based on physical laws and includes an automatic model parameterization scheme which makes the tool independent of field data for model calibration. In this study, REGFLEC performance was evaluated using LAI measurements and non-destructive measurements (using a SPAD meter) of leaf-scale CHLl and Nl concentrations in 93 fields representing crop- and grasslands of the five landscapes. Furthermore, empirical relationships between field measurements (LAI, CHLl and Nl and five spectral vegetation indices (the Normalized Difference Vegetation Index, the Simple Ratio, the Enhanced Vegetation Index-2, the Green Normalized Difference Vegetation Index, and the green chlorophyll index) were used to assess field data coherence and to serve as a comparison basis for assessing REGFLEC model performance. The field measurements showed strong vertical CHLl gradient profiles in 26% of fields which affected REGFLEC performance as well as the relationships between spectral vegetation indices (SVIs) and field measurements. When the range of surface types increased, the REGFLEC results were in better agreement with field data than the empirical SVI regression models. Selecting only homogeneous canopies with uniform CHLl distributions as reference data for evaluation, REGFLEC was able to explain 69% of LAI observations (rmse = 0.76), 46% of measured canopy chlorophyll contents (rmse = 719 mg m−2) and 51% of measured canopy nitrogen contents (rmse = 2.7 g m−2). Better results were obtained for individual landscapes, except for Italy, where REGFLEC performed poorly due to a lack of dense vegetation canopies at the time of satellite recording. Presence of vegetation is needed to parameterize the REGFLEC model. Combining REGFLEC- and SVI-based model results to minimize errors for a "snap-shot" assessment of total leaf nitrogen pools in the five landscapes, results varied from 0.6 to 4.0 t km−2. Differences in leaf nitrogen pools between landscapes are attributed to seasonal variations, extents of agricultural area, species variations, and spatial variations in nutrient availability. In order to facilitate a substantial assessment of variations in Nl pools and their relation to landscape based nitrogen and carbon cycling processes, time series of satellite data are needed. The upcoming Sentinel-2 satellite mission will provide new multiple narrowband data opportunities at high spatio-temporal resolution which are expected to further improve remote sensing capabilities for mapping LAI, CHLl and Nl.
Resumo:
C0 capture and storage (CCS) projects are presently developed to reduce the emission of anthropogenic co2 into the atmosphere. CCS technologies are expected to account for the 20% of the C0 reduction by 2050.The results of this paper are referred to the OXYCFB300 Compostilla Project (European Energy Program for Recover). Since the detection and control of potential leakage from storage formation is mandatory in a project of capture and geological storage of C02 (CCS), geophysical , ground deformation and geochemical monitoring have been carried out to detect potentialleakage, and, in the event that this occurs, identify and quantify it. This monitoring needs to be developed prior, during and after the injection stage. For a correct interpretation and quantification of the leakage, it is essential to establish a pre-injection characterization (baseline)of the area affected by the C02 storage at reservoir level as well as at shallow depth, surface and atmosphere, via soil gas measurements.
Resumo:
The aim of this work is an approach using multisensor remote sensing techniques to recognize the potential remains and recreate the original landscape of three archaeological sites. We investigate the spectral characteristics of the reflectance parameter and emissivity in the pattern recognition of archaeological materials in several hyperspectral scenes of the prehispanic site in Palmar Sur (Costa Rica), the Jarama Valley site and the celtiberian city of Segeda in Spain. Spectral ranges of the visible-near infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) from hyperspectral data cubes of HyMAP, AHS, MASTER and ATM have been used. Several experiments on natural scenarios of Costa Rica and Spain of different complexity, have been designed. Spectral patterns and thermal anomalies have been calculated as evidences of buried remains and change detection. First results, land cover change analyses and their consequences in the digital heritage registration are discussed.
Resumo:
In this paper, we report on the progresses of the BRITESPACE Consortium in order to achieve space-borne LIDAR measurements of atmospheric carbon dioxide concentration based on an all semiconductor laser source at 1.57 ?m. The complete design of the proposed RM-CW IPDA LIDAR has been presented and described in detail. Complete descriptions of the laser module and the FSU have been presented. Two bended MOPAs, emitting at the sounding frequency of the on- and off- IPDA channels, have been proposed as the transmitter optical sources with the required high brightness. Experimental results on the bended MOPAs have been presented showing a high spectral purity and promising expectations on the high output power requirements. Finally, the RM-CW approach has been modelled and an estimation of the expected SNR for the entire system is presented. Preliminary results indicate that a CO2 retrieval precision of 1.5 ppm could be achieved with an average output power of 2 W for each channel.
Resumo:
La utilización de sensores láser desde plataformas aéreas (LiDAR) ofrece nuevas posibilidades en el cartografiado de sistemas fluviales, tanto en áreas densamente cubiertas por vegetación, como en aquellas que presentan una escasa cubierta. La información topográfica de alta resolución que se obtiene a partir de las medidas láser puede ser utilizada en el análisis y estimación de diversas variables hidrológicas, y en el estudio de diferentes componentes del medio fluvial. Entre éstas, cabe citar la vegetación riparia, la morfología fluvial, el régimen hidrológico o el grado de alteración de los ecosistemas debido a las presiones de origen antrópico. La gestión del medio fluvial puede ser mejorada en gran medida gracias a la precisión y fiabilidad de esta información. En muchas ocasiones, el escaso relieve de los valles fluviales y la densa cubierta vegetal que existe en ellos han dificultado la aplicación de otras técnicas de teledetección. Sin embargo, los datos obtenidos mediante altimetría láser son especialmente aconsejables para estos trabajos, mediante análisis numéricos o a través de la simple interpretación de las imágenes obtenidas. Este artículo muestra las posibilidades de uso de los datos LiDAR en hidrología forestal y en la gestión de zonas húmedas, a lo largo de tramos con condiciones climáticas bien diferenciadas. En todas ellas, se comparan los resultados obtenidos mediante la aplicación de distinto software, con el fin de mostrar la mejor metodología de tratamiento de la información láser. Asimismo, se muestra la diferencia con otras técnicas de teledetección, y se muestra la fácil integración de los datos LiDAR con otras herramientas y metodologías de estudio de las variables citadas.
Resumo:
Disponer de información precisa y actualizada de inventario forestal es una pieza clave para mejorar la gestión forestal sostenible y para proponer y evaluar políticas de conservación de bosques que permitan la reducción de emisiones de carbono debidas a la deforestación y degradación forestal (REDD). En este sentido, la tecnología LiDAR ha demostrado ser una herramienta perfecta para caracterizar y estimar de forma continua y en áreas extensas la estructura del bosque y las principales variables de inventario forestal. Variables como la biomasa, el número de pies, el volumen de madera, la altura dominante, el diámetro o la altura media son estimadas con una calidad comparable a los inventarios tradicionales de campo. La presente tesis se centra en analizar la aplicación de los denominados métodos de masa de inventario forestal con datos LIDAR bajo diferentes condiciones y características de masa forestal (bosque templados puros y mixtos) y utilizando diferentes bases de datos LiDAR (información proveniente de vuelo nacionales e información capturada de forma específica). Como consecuencia de lo anterior, se profundiza en la generación de inventarios forestales continuos con LiDAR en grandes áreas. Los métodos de masa se basan en la búsqueda de relaciones estadísticas entre variables predictoras derivadas de la nube de puntos LiDAR y las variables de inventario forestal medidas en campo con el objeto de generar una cartografía continua de inventario forestal. El rápido desarrollo de esta tecnología en los últimos años ha llevado a muchos países a implantar programas nacionales de captura de información LiDAR aerotransportada. Estos vuelos nacionales no están pensados ni diseñados para fines forestales por lo que es necesaria la evaluación de la validez de esta información LiDAR para la descripción de la estructura del bosque y la medición de variables forestales. Esta información podría suponer una drástica reducción de costes en la generación de información continua de alta resolución de inventario forestal. En el capítulo 2 se evalúa la estimación de variables forestales a partir de la información LiDAR capturada en el marco del Plan Nacional de Ortofotografía Aérea (PNOA-LiDAR) en España. Para ello se compara un vuelo específico diseñado para inventario forestal con la información de la misma zona capturada dentro del PNOA-LiDAR. El caso de estudio muestra cómo el ángulo de escaneo, la pendiente y orientación del terreno afectan de forma estadísticamente significativa, aunque con pequeñas diferencias, a la estimación de biomasa y variables de estructura forestal derivadas del LiDAR. La cobertura de copas resultó más afectada por estos factores que los percentiles de alturas. Considerando toda la zona de estudio, la estimación de la biomasa con ambas bases de datos no presentó diferencias estadísticamente significativas. Las simulaciones realizadas muestran que las diferencias medias en la estimación de biomasa entre un vuelo específico y el vuelo nacional podrán superar el 4% en áreas abruptas, con ángulos de escaneo altos y cuando la pendiente de la ladera no esté orientada hacia la línea de escaneo. En el capítulo 3 se desarrolla un estudio en masas mixtas y puras de pino silvestre y haya, con un enfoque multi-fuente empleando toda la información disponible (vuelos LiDAR nacionales de baja densidad de puntos, imágenes satelitales Landsat y parcelas permanentes del inventario forestal nacional español). Se concluye que este enfoque multi-fuente es adecuado para realizar inventarios forestales continuos de alta resolución en grandes superficies. Los errores obtenidos en la fase de ajuste y de validación de los modelos de área basimétrica y volumen son similares a los registrados por otros autores (usando un vuelo específico y parcelas de campo específicas). Se observan errores mayores en la variable número de pies que los encontrados en la literatura, que pueden ser explicados por la influencia de la metodología de parcelas de radio variable en esta variable. En los capítulos 4 y 5 se evalúan los métodos de masa para estimar biomasa y densidad de carbono en bosques tropicales. Para ello se trabaja con datos del Parque Nacional Volcán Poás (Costa Rica) en dos situaciones diferentes: i) se dispone de una cobertura completa LiDAR del área de estudio (capitulo 4) y ii) la cobertura LiDAR completa no es técnica o económicamente posible y se combina una cobertura incompleta de LiDAR con imágenes Landsat e información auxiliar para la estimación de biomasa y carbono (capitulo 5). En el capítulo 4 se valida un modelo LiDAR general de estimación de biomasa aérea en bosques tropicales y se compara con los resultados obtenidos con un modelo ajustado de forma específica para el área de estudio. Ambos modelos están basados en la variable altura media de copas (TCH por sus siglas en inglés) derivada del modelo digital LiDAR de altura de la vegetación. Los resultados en el área de estudio muestran que el modelo general es una alternativa fiable al ajuste de modelos específicos y que la biomasa aérea puede ser estimada en una nueva zona midiendo en campo únicamente la variable área basimétrica (BA). Para mejorar la aplicación de esta metodología es necesario definir en futuros trabajos procedimientos adecuados de medición de la variable área basimétrica en campo (localización, tamaño y forma de las parcelas de campo). La relación entre la altura media de copas del LiDAR y el área basimétrica (Coeficiente de Stock) obtenida en el área de estudio varía localmente. Por tanto es necesario contar con más información de campo para caracterizar la variabilidad del Coeficiente de Stock entre zonas de vida y si estrategias como la estratificación pueden reducir los errores en la estimación de biomasa y carbono en bosques tropicales. En el capítulo 5 se concluye que la combinación de una muestra sistemática de información LiDAR con una cobertura completa de imagen satelital de moderada resolución (e información auxiliar) es una alternativa efectiva para la realización de inventarios continuos en bosques tropicales. Esta metodología permite estimar altura de la vegetación, biomasa y carbono en grandes zonas donde la captura de una cobertura completa de LiDAR y la realización de un gran volumen de trabajo de campo es económica o/y técnicamente inviable. Las alternativas examinadas para la predicción de biomasa a partir de imágenes Landsat muestran una ligera disminución del coeficiente de determinación y un pequeño aumento del RMSE cuando la cobertura de LiDAR es reducida de forma considerable. Los resultados indican que la altura de la vegetación, la biomasa y la densidad de carbono pueden ser estimadas en bosques tropicales de forma adecuada usando coberturas de LIDAR bajas (entre el 5% y el 20% del área de estudio). ABSTRACT The availability of accurate and updated forest data is essential for improving sustainable forest management, promoting forest conservation policies and reducing carbon emissions from deforestation and forest degradation (REDD). In this sense, LiDAR technology proves to be a clear-cut tool for characterizing forest structure in large areas and assessing main forest-stand variables. Forest variables such as biomass, stem volume, basal area, mean diameter, mean height, dominant height, and stem number can be thus predicted with better or comparable quality than with costly traditional field inventories. In this thesis, it is analysed the potential of LiDAR technology for the estimation of plot-level forest variables under a range of conditions (conifer & broadleaf temperate forests and tropical forests) and different LiDAR capture characteristics (nationwide LiDAR information vs. specific forest LiDAR data). This study evaluates the application of LiDAR-based plot-level methods in large areas. These methods are based on statistical relationships between predictor variables (derived from airborne data) and field-measured variables to generate wall to wall forest inventories. The fast development of this technology in recent years has led to an increasing availability of national LiDAR datasets, usually developed for multiple purposes throughout an expanding number of countries and regions. The evaluation of the validity of nationwide LiDAR databases (not designed specifically for forest purposes) is needed and presents a great opportunity for substantially reducing the costs of forest inventories. In chapter 2, the suitability of Spanish nationwide LiDAR flight (PNOA) to estimate forest variables is analyzed and compared to a specifically forest designed LiDAR flight. This study case shows that scan angle, terrain slope and aspect significantly affect the assessment of most of the LiDAR-derived forest variables and biomass estimation. Especially, the estimation of canopy cover is more affected than height percentiles. Considering the entire study area, biomass estimations from both databases do not show significant differences. Simulations show that differences in biomass could be larger (more than 4%) only in particular situations, such as steep areas when the slopes are non-oriented towards the scan lines and the scan angles are larger than 15º. In chapter 3, a multi-source approach is developed, integrating available databases such as nationwide LiDAR flights, Landsat imagery and permanent field plots from SNFI, with good resultos in the generation of wall to wall forest inventories. Volume and basal area errors are similar to those obtained by other authors (using specific LiDAR flights and field plots) for the same species. Errors in the estimation of stem number are larger than literature values as a consequence of the great influence that variable-radius plots, as used in SNFI, have on this variable. In chapters 4 and 5 wall to wall plot-level methodologies to estimate aboveground biomass and carbon density in tropical forest are evaluated. The study area is located in the Poas Volcano National Park (Costa Rica) and two different situations are analyzed: i) available complete LiDAR coverage (chapter 4) and ii) a complete LiDAR coverage is not available and wall to wall estimation is carried out combining LiDAR, Landsat and ancillary data (chapter 5). In chapter 4, a general aboveground biomass plot-level LiDAR model for tropical forest (Asner & Mascaro, 2014) is validated and a specific model for the study area is fitted. Both LiDAR plot-level models are based on the top-of-canopy height (TCH) variable that is derived from the LiDAR digital canopy model. Results show that the pantropical plot-level LiDAR methodology is a reliable alternative to the development of specific models for tropical forests and thus, aboveground biomass in a new study area could be estimated by only measuring basal area (BA). Applying this methodology, the definition of precise BA field measurement procedures (e.g. location, size and shape of the field plots) is decisive to achieve reliable results in future studies. The relation between BA and TCH (Stocking Coefficient) obtained in our study area in Costa Rica varied locally. Therefore, more field work is needed for assessing Stocking Coefficient variations between different life zones and the influence of the stratification of the study areas in tropical forests on the reduction of uncertainty. In chapter 5, the combination of systematic LiDAR information sampling and full coverage Landsat imagery (and ancillary data) prove to be an effective alternative for forest inventories in tropical areas. This methodology allows estimating wall to wall vegetation height, biomass and carbon density in large areas where full LiDAR coverage and traditional field work are technically and/or economically unfeasible. Carbon density prediction using Landsat imaginery shows a slight decrease in the determination coefficient and an increase in RMSE when harshly decreasing LiDAR coverage area. Results indicate that feasible estimates of vegetation height, biomass and carbon density can be accomplished using low LiDAR coverage areas (between 5% and 20% of the total area) in tropical locations.
Resumo:
Satellite image data have become an important source of information for monitoring vegetation and mapping land cover at several scales. Beside this, the distribution and phenology of vegetation is largely associated with climate, terrain characteristics and human activity. Various vegetation indices have been developed for qualitative and quantitative assessment of vegetation using remote spectral measurements. In particular, sensors with spectral bands in the red (RED) and near-infrared (NIR) lend themselves well to vegetation monitoring and based on them [(NIR - RED) / (NIR + RED)] Normalized Difference Vegetation Index (NDVI) has been widespread used. Given that the characteristics of spectral bands in RED and NIR vary distinctly from sensor to sensor, NDVI values based on data from different instruments will not be directly comparable. The spatial resolution also varies significantly between sensors, as well as within a given scene in the case of wide-angle and oblique sensors. As a result, NDVI values will vary according to combinations of the heterogeneity and scale of terrestrial surfaces and pixel footprint sizes. Therefore, the question arises as to the impact of differences in spectral and spatial resolutions on vegetation indices like the NDVI and their interpretation as a drought index. During 2012 three locations (at Salamanca, Granada and Córdoba) were selected and a periodic pasture monitoring and botanic composition were achieved. Daily precipitation, temperature and monthly soil water content were measurement as well as fresh and dry pasture weight. At the same time, remote sensing images were capture by DEIMOS-1 and MODIS of the chosen places. DEIMOS-1 is based on the concept Microsat-100 from Surrey. It is conceived for obtaining Earth images with a good enough resolution to study the terrestrial vegetation cover (20x20 m), although with a great range of visual field (600 km) in order to obtain those images with high temporal resolution and at a reduced cost. By contranst, MODIS images present a much lower spatial resolution (500x500 m). The aim of this study is to establish a comparison between two different sensors in their NDVI values at different spatial resolutions. Acknowledgements. This work was partially supported by ENESA under project P10 0220C-823. Funding provided by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. MTM2009-14621 and i-MATH No. CSD2006-00032 is greatly appreciated.
Resumo:
Esta tesis se ha realizado en el contexto del proyecto UPMSat-2, que es un microsatélite diseñado, construido y operado por el Instituto Universitario de Microgravedad "Ignacio Da Riva" (IDR / UPM) de la Universidad Politécnica de Madrid. Aplicación de la metodología Ingeniería Concurrente (Concurrent Engineering: CE) en el marco de la aplicación de diseño multidisciplinar (Multidisciplinary Design Optimization: MDO) es uno de los principales objetivos del presente trabajo. En los últimos años, ha habido un interés continuo en la participación de los grupos de investigación de las universidades en los estudios de la tecnología espacial a través de sus propios microsatélites. La participación en este tipo de proyectos tiene algunos desafíos inherentes, tales como presupuestos y servicios limitados. Además, debido al hecho de que el objetivo principal de estos proyectos es fundamentalmente educativo, por lo general hay incertidumbres en cuanto a su misión en órbita y cargas útiles en las primeras fases del proyecto. Por otro lado, existen limitaciones predeterminadas para sus presupuestos de masa, volumen y energía, debido al hecho de que la mayoría de ellos están considerados como una carga útil auxiliar para el lanzamiento. De este modo, el costo de lanzamiento se reduce considerablemente. En este contexto, el subsistema estructural del satélite es uno de los más afectados por las restricciones que impone el lanzador. Esto puede afectar a diferentes aspectos, incluyendo las dimensiones, la resistencia y los requisitos de frecuencia. En la primera parte de esta tesis, la atención se centra en el desarrollo de una herramienta de diseño del subsistema estructural que evalúa, no sólo las propiedades de la estructura primaria como variables, sino también algunas variables de nivel de sistema del satélite, como la masa de la carga útil y la masa y las dimensiones extremas de satélite. Este enfoque permite que el equipo de diseño obtenga una mejor visión del diseño en un espacio de diseño extendido. La herramienta de diseño estructural se basa en las fórmulas y los supuestos apropiados, incluyendo los modelos estáticos y dinámicos del satélite. Un algoritmo genético (Genetic Algorithm: GA) se aplica al espacio de diseño para optimizaciones de objetivo único y también multiobjetivo. El resultado de la optimización multiobjetivo es un Pareto-optimal basado en dos objetivo, la masa total de satélites mínimo y el máximo presupuesto de masa de carga útil. Por otro lado, la aplicación de los microsatélites en misiones espaciales es de interés por su menor coste y tiempo de desarrollo. La gran necesidad de las aplicaciones de teledetección es un fuerte impulsor de su popularidad en este tipo de misiones espaciales. Las misiones de tele-observación por satélite son esenciales para la investigación de los recursos de la tierra y el medio ambiente. En estas misiones existen interrelaciones estrechas entre diferentes requisitos como la altitud orbital, tiempo de revisita, el ciclo de vida y la resolución. Además, todos estos requisitos puede afectar a toda las características de diseño. Durante los últimos años la aplicación de CE en las misiones espaciales ha demostrado una gran ventaja para llegar al diseño óptimo, teniendo en cuenta tanto el rendimiento y el costo del proyecto. Un ejemplo bien conocido de la aplicación de CE es la CDF (Facilidad Diseño Concurrente) de la ESA (Agencia Espacial Europea). Está claro que para los proyectos de microsatélites universitarios tener o desarrollar una instalación de este tipo parece estar más allá de las capacidades del proyecto. Sin embargo, la práctica de la CE a cualquier escala puede ser beneficiosa para los microsatélites universitarios también. En la segunda parte de esta tesis, la atención se centra en el desarrollo de una estructura de optimización de diseño multidisciplinar (Multidisciplinary Design Optimization: MDO) aplicable a la fase de diseño conceptual de microsatélites de teledetección. Este enfoque permite que el equipo de diseño conozca la interacción entre las diferentes variables de diseño. El esquema MDO presentado no sólo incluye variables de nivel de sistema, tales como la masa total del satélite y la potencia total, sino también los requisitos de la misión como la resolución y tiempo de revisita. El proceso de diseño de microsatélites se divide en tres disciplinas; a) diseño de órbita, b) diseño de carga útil y c) diseño de plataforma. En primer lugar, se calculan diferentes parámetros de misión para un rango práctico de órbitas helio-síncronas (sun-synchronous orbits: SS-Os). Luego, según los parámetros orbitales y los datos de un instrumento como referencia, se calcula la masa y la potencia de la carga útil. El diseño de la plataforma del satélite se estima a partir de los datos de la masa y potencia de los diferentes subsistemas utilizando relaciones empíricas de diseño. El diseño del subsistema de potencia se realiza teniendo en cuenta variables de diseño más detalladas, como el escenario de la misión y diferentes tipos de células solares y baterías. El escenario se selecciona, de modo de obtener una banda de cobertura sobre la superficie terrestre paralelo al Ecuador después de cada intervalo de revisita. Con el objetivo de evaluar las interrelaciones entre las diferentes variables en el espacio de diseño, todas las disciplinas de diseño mencionados se combinan en un código unificado. Por último, una forma básica de MDO se ajusta a la herramienta de diseño de sistema de satélite. La optimización del diseño se realiza por medio de un GA con el único objetivo de minimizar la masa total de microsatélite. Según los resultados obtenidos de la aplicación del MDO, existen diferentes puntos de diseños óptimos, pero con diferentes variables de misión. Este análisis demuestra la aplicabilidad de MDO para los estudios de ingeniería de sistema en la fase de diseño conceptual en este tipo de proyectos. La principal conclusión de esta tesis, es que el diseño clásico de los satélites que por lo general comienza con la definición de la misión y la carga útil no es necesariamente la mejor metodología para todos los proyectos de satélites. Un microsatélite universitario, es un ejemplo de este tipo de proyectos. Por eso, se han desarrollado un conjunto de herramientas de diseño para encarar los estudios de la fase inicial de diseño. Este conjunto de herramientas incluye diferentes disciplinas de diseño centrados en el subsistema estructural y teniendo en cuenta una carga útil desconocida a priori. Los resultados demuestran que la mínima masa total del satélite y la máxima masa disponible para una carga útil desconocida a priori, son objetivos conflictivos. En este contexto para encontrar un Pareto-optimal se ha aplicado una optimización multiobjetivo. Según los resultados se concluye que la selección de la masa total por satélite en el rango de 40-60 kg puede considerarse como óptima para un proyecto de microsatélites universitario con carga útil desconocida a priori. También la metodología CE se ha aplicado al proceso de diseño conceptual de microsatélites de teledetección. Los resultados de la aplicación del CE proporcionan una clara comprensión de la interacción entre los requisitos de diseño de sistemas de satélites, tales como la masa total del microsatélite y la potencia y los requisitos de la misión como la resolución y el tiempo de revisita. La aplicación de MDO se hace con la minimización de la masa total de microsatélite. Los resultados de la aplicación de MDO aclaran la relación clara entre los diferentes requisitos de diseño del sistema y de misión, así como que permiten seleccionar las líneas de base para el diseño óptimo con el objetivo seleccionado en las primeras fase de diseño. ABSTRACT This thesis is done in the context of UPMSat-2 project, which is a microsatellite under design and manufacturing at the Instituto Universitario de Microgravedad “Ignacio Da Riva” (IDR/UPM) of the Universidad Politécnica de Madrid. Application of Concurrent Engineering (CE) methodology in the framework of Multidisciplinary Design application (MDO) is one of the main objectives of the present work. In recent years, there has been continuing interest in the participation of university research groups in space technology studies by means of their own microsatellites. The involvement in such projects has some inherent challenges, such as limited budget and facilities. Also, due to the fact that the main objective of these projects is for educational purposes, usually there are uncertainties regarding their in orbit mission and scientific payloads at the early phases of the project. On the other hand, there are predetermined limitations for their mass and volume budgets owing to the fact that most of them are launched as an auxiliary payload in which the launch cost is reduced considerably. The satellite structure subsystem is the one which is most affected by the launcher constraints. This can affect different aspects, including dimensions, strength and frequency requirements. In the first part of this thesis, the main focus is on developing a structural design sizing tool containing not only the primary structures properties as variables but also the satellite system level variables such as payload mass budget and satellite total mass and dimensions. This approach enables the design team to obtain better insight into the design in an extended design envelope. The structural design sizing tool is based on the analytical structural design formulas and appropriate assumptions including both static and dynamic models of the satellite. A Genetic Algorithm (GA) is applied to the design space for both single and multiobejective optimizations. The result of the multiobjective optimization is a Pareto-optimal based on two objectives, minimum satellite total mass and maximum payload mass budget. On the other hand, the application of the microsatellites is of interest for their less cost and response time. The high need for the remote sensing applications is a strong driver of their popularity in space missions. The satellite remote sensing missions are essential for long term research around the condition of the earth resources and environment. In remote sensing missions there are tight interrelations between different requirements such as orbital altitude, revisit time, mission cycle life and spatial resolution. Also, all of these requirements can affect the whole design characteristics. During the last years application of the CE in the space missions has demonstrated a great advantage to reach the optimum design base lines considering both the performance and the cost of the project. A well-known example of CE application is ESA (European Space Agency) CDF (Concurrent Design Facility). It is clear that for the university-class microsatellite projects having or developing such a facility seems beyond the project capabilities. Nevertheless practicing CE at any scale can be beneficiary for the university-class microsatellite projects. In the second part of this thesis, the main focus is on developing a MDO framework applicable to the conceptual design phase of the remote sensing microsatellites. This approach enables the design team to evaluate the interaction between the different system design variables. The presented MDO framework contains not only the system level variables such as the satellite total mass and total power, but also the mission requirements like the spatial resolution and the revisit time. The microsatellite sizing process is divided into the three major design disciplines; a) orbit design, b) payload sizing and c) bus sizing. First, different mission parameters for a practical range of sun-synchronous orbits (SS-Os) are calculated. Then, according to the orbital parameters and a reference remote sensing instrument, mass and power of the payload are calculated. Satellite bus sizing is done based on mass and power calculation of the different subsystems using design estimation relationships. In the satellite bus sizing, the power subsystem design is realized by considering more detailed design variables including a mission scenario and different types of solar cells and batteries. The mission scenario is selected in order to obtain a coverage belt on the earth surface parallel to the earth equatorial after each revisit time. In order to evaluate the interrelations between the different variables inside the design space all the mentioned design disciplines are combined in a unified code. The integrated satellite system sizing tool developed in this section is considered as an application of the CE to the conceptual design of the remote sensing microsatellite projects. Finally, in order to apply the MDO methodology to the design problem, a basic MDO framework is adjusted to the developed satellite system design tool. Design optimization is done by means of a GA single objective algorithm with the objective function as minimizing the microsatellite total mass. According to the results of MDO application, there exist different optimum design points all with the minimum satellite total mass but with different mission variables. This output demonstrates the successful applicability of MDO approach for system engineering trade-off studies at the conceptual design phase of the design in such projects. The main conclusion of this thesis is that the classical design approach for the satellite design which usually starts with the mission and payload definition is not necessarily the best approach for all of the satellite projects. The university-class microsatellite is an example for such projects. Due to this fact an integrated satellite sizing tool including different design disciplines focusing on the structural subsystem and considering unknown payload is developed. According to the results the satellite total mass and available mass for the unknown payload are conflictive objectives. In order to find the Pareto-optimal a multiobjective GA optimization is conducted. Based on the optimization results it is concluded that selecting the satellite total mass in the range of 40-60 kg can be considered as an optimum approach for a university-class microsatellite project with unknown payload(s). Also, the CE methodology is applied to the remote sensing microsatellites conceptual design process. The results of CE application provide a clear understanding of the interaction between satellite system design requirements such as satellite total mass and power and the satellite mission variables such as revisit time and spatial resolution. The MDO application is done with the total mass minimization of a remote sensing satellite. The results from the MDO application clarify the unclear relationship between different system and mission design variables as well as the optimum design base lines according to the selected objective during the initial design phases.