58 resultados para operational reliability
em Universidad Politécnica de Madrid
Resumo:
Experiences in decentralized rural electrification programmes using solar home systems have suffered difficulties during the operation and maintenance phase, due in many cases, to the underestimation of the maintenance cost, because of the decentralized character of the activity, and also because the reliability of the solar home system components is frequently unknown. This paper reports on the reliability study and cost characterization achieved in a large photovoltaic rural electrification programme carried out in Morocco. The paper aims to determinate the reliability features of the solar systems, focusing in the in-field testing for batteries and photovoltaic modules. The degradation rates for batteries and PV modules have been extracted from the in-field experiments. On the other hand, the main costs related to the operation and maintenance activity have been identified with the aim of establishing the main factors that lead to the failure of the quality sustainability in many rural electrification programmes.
Resumo:
Las terminales de contenedores son sistemas complejos en los que un elevado número de actores económicos interactúan para ofrecer servicios de alta calidad bajo una estricta planificación y objetivos económicos. Las conocidas como "terminales de nueva generación" están diseñadas para prestar servicio a los mega-buques, que requieren tasas de productividad que alcanzan los 300 movimientos/ hora. Estas terminales han de satisfacer altos estándares dado que la competitividad entre terminales es elevada. Asegurar la fiabilidad de las planificaciones del atraque es clave para atraer clientes, así como reducir al mínimo el tiempo que el buque permanece en el puerto. La planificación de las operaciones es más compleja que antaño, y las tolerancias para posibles errores, menores. En este contexto, las interrupciones operativas deben reducirse al mínimo. Las principales causas de dichas perturbaciones operacionales, y por lo tanto de incertidumbre, se identifican y caracterizan en esta investigación. Existen una serie de factores que al interactuar con la infraestructura y/o las operaciones desencadenan modos de fallo o parada operativa. Los primeros pueden derivar no solo en retrasos en el servicio sino que además puede tener efectos colaterales sobre la reputación de la terminal, o incluso gasto de tiempo de gestión, todo lo cual supone un impacto para la terminal. En el futuro inmediato, la monitorización de las variables operativas presenta gran potencial de cara a mejorar cualitativamente la gestión de las operaciones y los modelos de planificación de las terminales, cuyo nivel de automatización va en aumento. La combinación del criterio experto con instrumentos que proporcionen datos a corto y largo plazo es fundamental para el desarrollo de herramientas que ayuden en la toma de decisiones, ya que de este modo estarán adaptadas a las auténticas condiciones climáticas y operativas que existen en cada emplazamiento. Para el corto plazo se propone una metodología con la que obtener predicciones de parámetros operativos en terminales de contenedores. Adicionalmente se ha desarrollado un caso de estudio en el que se aplica el modelo propuesto para obtener predicciones de la productividad del buque. Este trabajo se ha basado íntegramente en datos proporcionados por una terminal semi-automatizada española. Por otro lado, se analiza cómo gestionar, evaluar y mitigar el efecto de las interrupciones operativas a largo plazo a través de la evaluación del riesgo, una forma interesante de evaluar el effecto que eventos inciertos pero probables pueden generar sobre la productividad a largo plazo de la terminal. Además se propone una definición de riesgo operativo junto con una discusión de los términos que representan con mayor fidelidad la naturaleza de las actividades y finalmente, se proporcionan directrices para gestionar los resultados obtenidos. Container terminals are complex systems where a large number of factors and stakeholders interact to provide high-quality services under rigid planning schedules and economic objectives. The socalled next generation terminals are conceived to serve the new mega-vessels, which are demanding productivity rates up to 300 moves/hour. These terminals need to satisfy high standards because competition among terminals is fierce. Ensuring reliability in berth scheduling is key to attract clients, as well as to reduce at a minimum the time that vessels stay the port. Because of the aforementioned, operations planning is becoming more complex, and the tolerances for errors are smaller. In this context, operational disturbances must be reduced at a minimum. The main sources of operational disruptions and thus, of uncertainty, are identified and characterized in this study. External drivers interact with the infrastructure and/or the activities resulting in failure or stoppage modes. The later may derive not only in operational delays but in collateral and reputation damage or loss of time (especially management times), all what implies an impact for the terminal. In the near future, the monitoring of operational variables has great potential to make a qualitative improvement in the operations management and planning models of terminals that use increasing levels of automation. The combination of expert criteria with instruments that provide short- and long-run data is fundamental for the development of tools to guide decision-making, since they will be adapted to the real climatic and operational conditions that exist on site. For the short-term a method to obtain operational parameter forecasts in container terminals. To this end, a case study is presented, in which forecasts of vessel performance are obtained. This research has been entirely been based on data gathered from a semi-automated container terminal from Spain. In the other hand it is analyzed how to manage, evaluate and mitigate disruptions in the long-term by means of the risk assessment, an interesting approach to evaluate the effect of uncertain but likely events on the long-term throughput of the terminal. In addition, a definition for operational risk evaluation in port facilities is proposed along with a discussion of the terms that better represent the nature of the activities involved and finally, guidelines to manage the results obtained are provided.
Resumo:
Geological storage of CO2 is nowadays internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize its effects on the global climatology. One of the main options is to store the CO2 in deep saline aquifers at more than 800 m depth, because it achieves its supercritical state. Among the most important aspects concerning the performance assessment of a deep CO2 geological repository is the evaluation of the CO2 leakage rate from the chosen storage geological formation. Therefore, it is absolutely necessary to increase the knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths for CO2 and the physico-mechanical resistance of the sealing formation. Furthermore, the quantification of the CO2 leakage rate is essential to evaluate its effects on the environment. One way to achieve this objective is to study of CO2 leakage on natural analogue systems, because they can provide useful information about the natural performance of the CO2, which can be applied to an artificial CO2 geological storage. This work is focused on the retention capacity of the cap-rock by measuring the diffuse soil CO2 flux in a site selected based on: i) the presence of a natural and deep CO2 accumulation; ii) its structural geological characteristics; and iii) the nature of the cap-rocks. This site is located in the so-called Mazarrón-Gañuelas Tertiary Basin, in the Guadalentin Valley, province of Murcia (Spain) Therefore the main objective of this investigation has been to detect the possible leakages of CO2 from a deep saline aquifer to the surface in order to understand the capability of this area as a natural analogue for Carbon Capture and Sequestration (CCS). The results obtained allow to conclude that the geological sealing formation of the basin seems to be appropriate to avoid CO2 leakages from the storage formation.
Resumo:
The use of cloud computing is extending to all kind of systems, including the ones that are part of Critical Infrastructures, and measuring the reliability is becoming more difficult. Computing is becoming the 5th utility, in part thanks to the use of cloud services. Cloud computing is used now by all types of systems and organizations, including critical infrastructure, creating hidden inter-dependencies on both public and private cloud models. This paper investigates the use of cloud computing by critical infrastructure systems, the reliability and continuity of services risks associated with their use by critical systems. Some examples are presented of their use by different critical industries, and even when the use of cloud computing by such systems is not widely extended, there is a future risk that this paper presents. The concepts of macro and micro dependability and the model we introduce are useful for inter-dependency definition and for analyzing the resilience of systems that depend on other systems, specifically in the cloud model.
Resumo:
Models based on degradation are powerful and useful tools to evaluate the reliability of those devices in which failure happens because of degradation in the performance parameters. This paper presents a procedure for assessing the reliability of concentrator photovoltaic (CPV) modules operating outdoors in real-time conditions. With this model, the main reliability functions are predicted. This model has been applied to a real case with a module composed of GaAs single-junction solar cells and total internal reflection (TIR) optics
Resumo:
This paper presents some of the results of a method to determine the main reliability functions of concentrator solar cells. High concentrator GaAs single junction solar cells have been tested in an Accelerated Life Test. The method can be directly applied to multi-junction solar cells. The main conclusions of this test carried out show that these solar cells are robust devices with a very low probability of failure caused by degradation during their operation life (more than 30 years). The evaluation of the probability operation function (i.e. the reliability function R(t)) is obtained for two nominal operation conditions of these cells, namely simulated concentration ratios of 700 and 1050 suns. Preliminary determination of the Mean Time to Failure indicates a value much higher than the intended operation life time of the concentrator cells.
Resumo:
AlGaN/GaN high electron mobility transistors (HEMT) are key devices for the next generation of high-power, high-frequency and high-temperature electronics applications. Although significant progress has been recently achieved [1], stability and reliability are still some of the main issues under investigation, particularly at high temperatures [2-3]. Taking into account that the gate contact metallization is one of the weakest points in AlGaN/GaN HEMTs, the reliability of Ni, Mo, Pt and refractory metal gates is crucial [4-6]. This work has been focused on the thermal stress and reliability assessment of AlGaN/GaN HEMTs. After an unbiased storage at 350 o C for 2000 hours, devices with Ni/Au gates exhibited detrimental IDS-VDS degradation in pulsed mode. In contrast, devices with Mo/Au gates showed no degradation after similar storage conditions. Further capacitance-voltage characterization as a function of temperature and frequency revealed two distinct trap-related effects in both kinds of devices. At low frequency (< 1MHz), increased capacitance near the threshold voltage was present at high temperatures and more pronounced for the Ni/Au gate HEMT and as the frequency is lower. Such an anomalous “bump” has been previously related to H-related surface polar charges [7]. This anomalous behavior in the C-V characteristics was also observed in Mo/Au gate HEMTs after 1000 h at a calculated channel temperatures of around from 250 o C (T2) up to 320 ºC (T4), under a DC bias (VDS= 25 V, IDS= 420 mA/mm) (DC-life test). The devices showed a higher “bump” as the channel temperature is higher (Fig. 1). At 1 MHz, the higher C-V curve slope of the Ni/Au gated HEMTs indicated higher trap density than Mo/Au metallization (Fig. 2). These results highlight that temperature is an acceleration factor in the device degradation, in good agreement with [3]. Interface state density analysis is being performed in order to estimate the trap density and activation energy.
Resumo:
Laminated glass is a sandwich element consisting of two or more glass sheets, with one or more interlayers of polyvinyl butyral (PVB). The dynamic response of laminated glass beams and plates can be predicted using analytical or numerical models in which the glass and the PVB are usually modelled as linear-elastic and linear viscoelastic materials, respectively. In this work the dynamic behavior of laminated glass beams are predicted using a finite element model and the analytical model of Ross-Kerwin-Ungar. The numerical and analytical results are compared with those obtained by operational modal analysis performed at different temperatures.
Resumo:
Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is being consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals and is being developed as a practical process amenable to production engineering. The main acknowledged advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Following a short description of the theoretical/computational and experimental methods developed by the authors for the predictive assessment and experimental implementation of LSP treatments, experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (specifically Al and Ti alloys) under different LSP irradiation conditions are presented. In particular, the analysis of the residual stress profiles obtained under different irradiation parameters and the evaluation of the corresponding induced surface properties as roughness and wear resistance are presented.
Advances in the modeling, characterization and reliability of concentrator multijunction solar cells
Resumo:
Los sistemas de concentración fotovoltaica (CPV) parecen ser una de las vías más prometedoras para generar electricidad a gran escala a precios competitivos. La investigación actual se centra en aumentar la eficiencia y la concentración de los sistemas para abaratar costes. Al mismo tiempo se investiga sobre la fiabilidad de los diferentes componentes que integran un sistema de concentración, ya que para que los sistemas de concentración sean competitivos es necesario que tengan una fiabilidad al menos similar a los sistemas basados en células de silicio. En la presente tesis doctoral se ha llevado a cabo el estudio de aspectos avanzados de células solares multi-unión diseñadas para trabajar a concentraciones ultra-altas. Para ello, se ha desarrollado un modelo circuital tridimensional distribuido con el que simular el comportamiento de las células solares triple-unión bajo distintas condiciones de funcionamiento, así mismo se ha realizado una caracterización avanzada de este tipo de células para comprender mejor su modo de operación y así poder contribuir a mejorar su eficiencia. Finalmente, se han llevado a cabo ensayos de vida acelerados en células multiunión comerciales para conocer la fiabilidad de este tipo de células solares. Para la simulación de células solares triple-unión se ha desarrollado en la presente tesis doctoral un modelo circuital tridimensinal distribuido el cuál integra una descripción completa de la unión túnel. De este modo, con el modelo desarrollado, hemos podido simular perfiles de luz sobre la célula solar que hacen que la densidad de corriente fotogenerada sea mayor a la densidad de corriente pico de la unión túnel. El modelo desarrollado también contempla la distribución lateral de corriente en las capas semiconductoras que componen y rodean la unión túnel. Por tanto, se ha podido simular y analizar el efecto que tiene sobre el funcionamiento de la célula solar que los concentradores ópticos produzcan perfiles de luz desuniformes, tanto en nivel de irradiancia como en el contenido espectral de la luz (aberración cromática). Con el objetivo de determinar cuáles son los mecanismos de recombinación que están limitando el funcionamiento de cada subcélula que integra una triple-unión, y así intentar reducirlos, se ha llevado a cabo la caracterización eléctrica de células solares monouni ón idénticas a las subcelulas de una triple-unión. También se ha determinado la curva corriente-tensión en oscuridad de las subcélulas de GaInP y GaAs de una célula dobleunión mediante la utilización de un teorema de reciprocidad electro-óptico. Finalmente, se ha analizado el impacto de los diferentes mecanismos de recombinación en el funcionamiento de la célula solar triple-unión en concentración. Por último, para determinar la fiabilidad de este tipo de células, se ha llevado a cabo un ensayo de vida acelerada en temperatura en células solares triple-unión comerciales. En la presente tesis doctoral se describe el diseño del ensayo, el progreso del mismo y los datos obtenidos tras el análisis de los resultados preliminares. Abstract Concentrator photovoltaic systems (CPV) seem to be one of the most promising ways to generate electricity at competitive prices. Nowadays, the research is focused on increasing the efficiency and the concentration of the systems in order to reduce costs. At the same time, another important area of research is the study of the reliability of the different components which make up a CPV system. In fact, in order for a CPV to be cost-effective, it should have a warranty at least similar to that of the systems based on Si solar cells. In the present thesis, we will study in depth the behavior of multijunction solar cells under ultra-high concentration. With this purpose in mind, a three-dimensional circuital distributed model which is able to simulate the behavior of triple-junction solar cells under different working conditions has been developed. Also, an advanced characterization of these solar cells has been carried out in order to better understand their behavior and thus contribute to improving efficiency. Finally, accelerated life tests have been carried out on commercial lattice-matched triple-junction solar cells in order to determine their reliability. In order to simulate triple-junction solar cells, a 3D circuital distributed model which integrates a full description of the tunnel junction has been developed. We have analyzed the behavior of the multijunction solar cell under light profiles which cause the current density photo-generated in the solar cell to be higher than the tunnel junction’s peak current density. The advanced model developed also takes into account the lateral current spreading through the semiconductor layers which constitute and surround the tunnel junction. Therefore, the effects of non-uniform light profiles, in both irradiance and the spectral content produced by the concentrators on the solar cell, have been simulated and analyzed. In order to determine which recombination mechanisms are limiting the behavior of each subcell in a triple-junction stack, and to try to reduce them when possible, an electrical characterization of single-junction solar cells that resemble the subcells in a triplejunction stack has been carried out. Also, the dark I-V curves of the GaInP and GaAs subcells in a dual-junction solar cell have been determined by using an electro-optical reciprocity theorem. Finally, the impact of the different recombination mechanisms on the behavior of the triple-junction solar cell under concentration has been analyzed. In order to determine the reliability of these solar cells, a temperature accelerated life test has been carried out on commercial triple-junction solar cells. In the present thesis, the design and the evolution of the test, as well as the data obtained from the analysis of the preliminary results, are presented.
Resumo:
A reliability approach to tunnel support design is presented in this paper. The aim of the work is the incorporation of classical Level II techniques to the current design method based on the study of the ground-support interaction diagram.
Resumo:
In this paper we introduce the idea of using a reliability measure associated to the predic- tions made by recommender systems based on collaborative filtering. This reliability mea- sure is based on the usual notion that the more reliable a prediction, the less liable to be wrong. Here we will define a general reliability measure suitable for any arbitrary recom- mender system. We will also show a method for obtaining specific reliability measures specially fitting the needs of different specific recommender systems.
Resumo:
This paper presents the Expectation Maximization algorithm (EM) applied to operational modal analysis of structures. The EM algorithm is a general-purpose method for maximum likelihood estimation (MLE) that in this work is used to estimate state space models. As it is well known, the MLE enjoys some optimal properties from a statistical point of view, which make it very attractive in practice. However, the EM algorithm has two main drawbacks: its slow convergence and the dependence of the solution on the initial values used. This paper proposes two different strategies to choose initial values for the EM algorithm when used for operational modal analysis: to begin with the parameters estimated by Stochastic Subspace Identification method (SSI) and to start using random points. The effectiveness of the proposed identification method has been evaluated through numerical simulation and measured vibration data in the context of a benchmark problem. Modal parameters (natural frequencies, damping ratios and mode shapes) of the benchmark structure have been estimated using SSI and the EM algorithm. On the whole, the results show that the application of the EM algorithm starting from the solution given by SSI is very useful to identify the vibration modes of a structure, discarding the spurious modes that appear in high order models and discovering other hidden modes. Similar results are obtained using random starting values, although this strategy allows us to analyze the solution of several starting points what overcome the dependence on the initial values used.
Resumo:
The estimation of modal parameters of a structure from ambient measurements has attracted the attention of many researchers in the last years. The procedure is now well established and the use of state space models, stochastic system identification methods and stabilization diagrams allows to identify the modes of the structure. In this paper the contribution of each identified mode to the measured vibration is discussed. This modal contribution is computed using the Kalman filter and it is an indicator of the importance of the modes. Also the variation of the modal contribution with the order of the model is studied. This analysis suggests selecting the order for the state space model as the order that includes the modes with higher contribution. The order obtained using this method is compared to those obtained using other well known methods, like Akaike criteria for time series or the singular values of the weighted projection matrix in the Stochastic Subspace Identification method. Finally, both simulated and measured vibration data are used to show the practicability of the derived technique. Finally, it is important to remark that the method can be used with any identification method working in the state space model.
Resumo:
In this paper, a reliability analysis of a photovoltaic rural electrification (PVRE) programme is proposed considering the failures in the 13 000 installed Solar Home System (SHS) devices occurring over a long operating period of 5 years. A previous arrangement of the database and a brief explanation of the reliability concepts will serve to introduce the failure distribution of every component, from which the SHS lifetime operating features will be described. An application example will show the usefulness of the obtained results in the forecasting of spare parts during the maintenance period. The conclusions of this study may be useful in the scientific design of PVRE programme maintenance structures, with the goal of shedding some light on the technical management mechanisms in decentralised rural electrification.