4 resultados para onshore AC grid
em Universidad Politécnica de Madrid
Resumo:
Renewable energy hybrid systems and mini-grids for electrification of rural areas are known to be reliable and more cost efficient than grid extension or only-diesel based systems. However, there is still some uncertainty in some areas, for example, which is the most efficient way of coupling hybrid systems: AC, DC or AC-DC? With the use of Matlab/Simulink a mini-grid that connects a school, a small hospital and an ecotourism hostel has been modelled. This same mini grid has been coupled in the different possible ways and the system’s efficiency has been studied. In addition, while keeping the consumption constant, the generation sources and the consumption profile have been modified and the effect on the efficiency under each configuration has also been analysed. Finally different weather profiles have been introduced and, again, the effect on the efficiency of each system has been observed.
Resumo:
This study develops a proposal of method of calculation useful to estimate the energy produced by a PV grid-connected system making use of irradiance-domain integrals and denition of statistical moment. Validation against database of real PV plants performance data shows that acceptable energy estimation can be obtained with rst to fourth statistical moments and some basic system parameters. This way, only simple calculations at the reach of pocket calculators, are enough to estimate AC energy.
Resumo:
This paper presents a comprehensive review of stepup single-phase non-isolated inverters suitable for ac-module applications. In order to compare the most feasible solutions of the reviewed topologies, a benchmark is set. This benchmark is based on a typical ac-module application considering the requirements for the solar panels and the grid. The selected solutions are designed and simulated complying with the benchmark obtaining passive and semiconductor components ratings in order to perform a comparison in terms of size and cost. A discussion of the analyzed topologies regarding the obtained ratings as well as ground currents is presented. Recommendations for topological solutions complying with the application benchmark are provided.
Resumo:
This paper presents a primary-parallel secondaryseries multicore forward microinverter for photovoltaic ac-module application. The presented microinverter operates with a constant off-time boundary mode control, providing MPPT capability and unity power factor. The proposed multitransformer solution allows using low-profile unitary turns ratio transformers. Therefore, the transformers are better coupled and the overall performance of the microinverter is improved. Due to the multiphase solution, the number of devices increases but the current stress and losses per device are reduced contributing to an easier thermal management. Furthermore, the decoupling capacitor is split among the phases, contributing to a low-profile solution without electrolytic capacitors suitable to be mounted in the frame of a PV module. The proposed solution is compared to the classical parallel-interleaved approach, showing better efficiency in a wide power range and improving the weighted efficiency.