5 resultados para octahedral polyoxomolybdate
em Universidad Politécnica de Madrid
Resumo:
The atomic environments of Fe and Co involved in the magnetostriction effect in FeCoB alloys have been identified by differential extended x-ray fine structure (DiffEXAFS) spectroscopy. The study, done in amorphous and polycrystalline FeCoB films, demonstrates that the alloys are heterogeneous and that boron plays a crucial role in the origin of their magnetostrictive properties. The analysis of DiffEXAFS in the polycrystalline and amorphous alloys indicates that boron activates magnetostriction when entering as an impurity into octahedral interstitial sites of the Fe bcc lattice, causing its tetragonal distortion. Magnetostriction would be explained then by the relative change in volume when the tetragonal axis of the site is reoriented under an externally applied magnetic field. The experiment demonstrates the extreme sensitivity of DiffEXAFS to characterize magnetostrictive environments that are undetectable in their related EXAFS spectra.
Resumo:
Using photocatalysis for energy applications depends, more than for environmental purposes or selective chemical synthesis, on converting as much of the solar spectrum as possible; the best photocatalyst, titania, is far from this. Many efforts are pursued to use better that spectrum in photocatalysis, by doping titania or using other materials (mainly oxides, nitrides and sulphides) to obtain a lower bandgap, even if this means decreasing the chemical potential of the electron-hole pairs. Here we introduce an alternative scheme, using an idea recently proposed for photovoltaics: the intermediate band (IB) materials. It consists in introducing in the gap of a semiconductor an intermediate level which, acting like a stepstone, allows an electron jumping from the valence band to the conduction band in two steps, each one absorbing one sub-bandgap photon. For this the IB must be partially filled, to allow both sub-bandgap transitions to proceed at comparable rates; must be made of delocalized states to minimize nonradiative recombination; and should not communicate electronically with the outer world. For photovoltaic use the optimum efficiency so achievable, over 1.5 times that given by a normal semiconductor, is obtained with an overall bandgap around 2.0 eV (which would be near-optimal also for water phtosplitting). Note that this scheme differs from the doping principle usually considered in photocatalysis, which just tries to decrease the bandgap; its aim is to keep the full bandgap chemical potential but using also lower energy photons. In the past we have proposed several IB materials based on extensively doping known semiconductors with light transition metals, checking first of all with quantum calculations that the desired IB structure results. Subsequently we have synthesized in powder form two of them: the thiospinel In2S3 and the layered compound SnS2 (having bandgaps of 2.0 and 2.2 eV respectively) where the octahedral cation is substituted at a â?10% level with vanadium, and we have verified that this substitution introduces in the absorption spectrum the sub-bandgap features predicted by the calculations. With these materials we have verified, using a simple reaction (formic acid oxidation), that the photocatalytic spectral response is indeed extended to longer wavelengths, being able to use even 700 nm photons, without largely degrading the response for above-bandgap photons (i.e. strong recombination is not induced) [3b, 4]. These materials are thus promising for efficient photoevolution of hydrogen from water; work on this is being pursued, the results of which will be presented.
Resumo:
Nowadays one of the challenges of materials science is to find new technologies that will be able to make the most of renewable energies. An example of new proposals in this field are the intermediate-band (IB) materials, which promise higher efficiencies in photovoltaic applications (through the intermediate band solar cells), or in heterogeneous photocatalysis (using nanoparticles of them, for the light-induced degradation of pollutants or for the efficient photoevolution of hydrogen from water). An IB material consists in a semiconductor in which gap a new level is introduced [1], the intermediate band (IB), which should be partially filled by electrons and completely separated of the valence band (VB) and of the conduction band (CB). This scheme (figure 1) allows an electron from the VB to be promoted to the IB, and from the latter to the CB, upon absorption of photons with energy below the band gap Eg, so that energy can be absorbed in a wider range of the solar spectrum and a higher current can be obtained without sacrificing the photovoltage (or the chemical driving force) corresponding to the full bandgap Eg, thus increasing the overall efficiency. This concept, applied to photocatalysis, would allow using photons of a wider visible range while keeping the same redox capacity. It is important to note that this concept differs from the classic photocatalyst doping principle, which essentially tries just to decrease the bandgap. This new type of materials would keep the full bandgap potential but would use also lower energy photons. In our group several IB materials have been proposed, mainly for the photovoltaic application, based on extensively doping known semiconductors with transition metals [2], examining with DFT calculations their electronic structures. Here we refer to In2S3 and SnS2, which contain octahedral cations; when doped with Ti or V an IB is formed according to quantum calculations (see e.g. figure 2). We have used a solvotermal synthesis method to prepare in nanocrystalline form the In2S3 thiospinel and the layered compound SnS2 (which when undoped have bandgaps of 2.0 and 2.2 eV respectively) where the cation is substituted by vanadium at a ?10% level. This substitution has been studied, characterizing the materials by different physical and chemical techniques (TXRF, XRD, HR-TEM/EDS) (see e.g. figure 3) and verifying with UV spectrometry that this substitution introduces in the spectrum the sub-bandgap features predicted by the calculations (figure 4). For both sulphide type nanoparticles (doped and undoped) the photocatalytic activity was studied by following at room temperature the oxidation of formic acid in aqueous suspension, a simple reaction which is easily monitored by UV-Vis spectroscopy. The spectral response of the process is measured using a collection of band pass filters that allow only some wavelengths into the reaction system. Thanks to this method the spectral range in which the materials are active in the photodecomposition (which coincides with the band gap for the undoped samples) can be checked, proving that for the vanadium substituted samples this range is increased, making possible to cover all the visible light range. Furthermore it is checked that these new materials are more photocorrosion resistant than the toxic CdS witch is a well know compound frequently used in tests of visible light photocatalysis. These materials are thus promising not only for degradation of pollutants (or for photovoltaic cells) but also for efficient photoevolution of hydrogen from water; work in this direction is now being pursued.
Resumo:
We present a theoretical study of the structural and electronic properties of the M-doped MgIn2S4 ternary spinel semiconductor with M = V, Cr, and Mn. All substitutions, in the normal and in the inverse structure, are analyzed. Some of these possible substitutions present intermediate-band states in the band gap with a different occupation for a spin component. It increases the possibilities of inter-band transitions and could be interesting for applications in optoelectronic devices. The contribution to, and the electronic configuration of, these intermediate bands for the octahedral and tetrahedral sites is analyzed and discussed. The study of the substitutional energies indicates that these substitutions are favorable. Comparison between the pure and doped hosts absorption coefficients shows that this deeper band opens up more photon absorption channels and could therefore increase the solar-light absorption with respect to the host.
Resumo:
The CdIn2S4 spinel semiconductor is a potential photovoltaic material due to its energy band gap and absorption properties. These optoelectronic properties can be potentiality improved by the insertion of intermediate states into the energy bandgap. We explore this possibility using M = Cr, V and Mn as an impurity. We analyze with first-principles almost all substitutions of the host atoms by M at the octahedral and tetrahedral sites in the normal and inverse spinel structures. In almost all cases, the impurities introduce deeper bands into the host energy bandgap. Depending on the site substitution, these bands are full, empty or partially-full. It increases the number of possible inter-band transitions and the possible applications in optoelectronic devices. The contribution of the impurity states to these bands and the substitutional energies indicate that these impurities are energetically favorable for some sites in the host spinel. The absorption coefficients in the independent-particle approximation show that these deeper bands open additional photon absorption channels. It could therefore increase the solar-light absorption with respect to the host.