4 resultados para obstacle crossing

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Implantación de la Red de Alta velocidad Ferroviaria en California. Tramo San Francisco-Sacramento. Este artículo de la serie “Alta velocidad Ferroviaria en California (CHSRS), se ocupa de la línea San Francisco– Sacramento “Bay Crossing Alternative”, que cierra la red de alta velocidad ferroviaria del Estado de California, permitiendo en la terminal HSR de Sacramento, conectar con la línea Fresno–Sacramento, en coincidencia de trazados para en el futuro prolongar la red californiana de alta velocidad ferroviaria hasta su entronque con la del Estado de Nevada, vía Tahoe Lake–Reno. La línea San Francisco–Sacramento “Bay Crossing Alternative”, consta de tres trayectos: El primero de ellos “San Francisco urbano” va desde la terminal HSR “San Francisco Airport”, donde termina la alternativa “Golden Gate” de la línea Fresno–San Francisco, hasta el viaducto de acceso al Paso de la Bahía, que constituye el segundo trayecto “San Francisco–Richmond”, trayecto estrella de la red, de 15,48 Km de longitud sobre la Bahía de San Francisco, con desarrollo a través de 11,28 Km en puente colgante múltiple, con vanos de 800 m de luz y 67 m de altura libre bajo el tablero que permite la navegación en la Bahía. El tercer trayecto “Richmond–Sacramento” cruza la Bahía de San Pablo con un puente colgante de 1,6 Km de longitud y tipología similar a los múltiples de la Bahía de San Francisco, pasa por Vallejo (la por plazo breve de tiempo, antigua capital del Estado de California) y por la universitaria Davis, antes de finalmente llegar a la HSR Terminal Station de Sacramento Roseville. This article of the series “California High Speed Railway System”(CHSRS) treats on Line San Francisco–Sacramento “Bay Crossing Alternative” (BCA). This line closes the system of California high speed state railway, and connects with the line Fresno–Sacramento “Stockton Arch Alternative”, joining its alignments in the HSR Terminal of Sacramento Roseville. From this station it will be possible, in the future, to extend the Californian railway system till the Nevada railway system, vía Tahoe Lake and Reno. The BCA consists of three sections: The first one passing through San Francisco city, goes from HSR San Francisco Airport Terminal Station (where the line Fresno–San Francisco “Golden Gate Alternative” ends), up to the Viaduct access at the Bay Crossing. The second section San Francisco–Richmond, constitutes the star section of the system, with 15,48 Km length on the San Francisco Bay, where 11,28 Km in multi suspension bridge, 800 m span and 67 m gauge under panel, to allow navigation through the Bay. The third section Richmond–Sacramento crosses the San Pablo Bay through another suspension bridge of similar typology to that of San Francisco Bay crossing; pass through Vallejo (the ancient and for a short time Head of the State of California) and through Davis, university city, to arrive to the HSR Terminal Station of Sacramento Roseville.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The general aim of this study can be summarized in contributin gempirical evidence on the existence, design, fabrication and functioning of the crossing trellis vaults asa constructive expression of the Spanish renaissance moved to the New Spain, today México, and their mutual relation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuts & bolts of construction history : culture, technology and society :[proceedings of the Fourth International Congress on Construction History, Paris, 3-7 July 2012. ISBN: 978-2-7084-0929-3 . Vol 1 págs 81 a 88

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La robótica ha evolucionado exponencialmente en las últimas décadas, permitiendo a los sistemas actuales realizar tareas sumamente complejas con gran precisión, fiabilidad y velocidad. Sin embargo, este desarrollo ha estado asociado a un mayor grado de especialización y particularización de las tecnologías implicadas, siendo estas muy eficientes en situaciones concretas y controladas, pero incapaces en entornos cambiantes, dinámicos y desestructurados. Por eso, el desarrollo de la robótica debe pasar por dotar a los sistemas de capacidad de adaptación a las circunstancias, de entendedimiento sobre los cambios observados y de flexibilidad a la hora de interactuar con el entorno. Estas son las caracteristicas propias de la interacción del ser humano con su entorno, las que le permiten sobrevivir y las que pueden proporcionar a un sistema inteligencia y capacidad suficientes para desenvolverse en un entorno real de forma autónoma e independiente. Esta adaptabilidad es especialmente importante en el manejo de riesgos e incetidumbres, puesto que es el mecanismo que permite contextualizar y evaluar las amenazas para proporcionar una respuesta adecuada. Así, por ejemplo, cuando una persona se mueve e interactua con su entorno, no evalúa los obstáculos en función de su posición, velocidad o dinámica (como hacen los sistemas robóticos tradicionales), sino mediante la estimación del riesgo potencial que estos elementos suponen para la persona. Esta evaluación se consigue combinando dos procesos psicofísicos del ser humano: por un lado, la percepción humana analiza los elementos relevantes del entorno, tratando de entender su naturaleza a partir de patrones de comportamiento, propiedades asociadas u otros rasgos distintivos. Por otro lado, como segundo nivel de evaluación, el entendimiento de esta naturaleza permite al ser humano conocer/estimar la relación de los elementos con él mismo, así como sus implicaciones en cuanto a nivel de riesgo se refiere. El establecimiento de estas relaciones semánticas -llamado cognición- es la única forma de definir el nivel de riesgo de manera absoluta y de generar una respuesta adecuada al mismo. No necesariamente proporcional, sino coherente con el riesgo al que se enfrenta. La investigación que presenta esta tesis describe el trabajo realizado para trasladar esta metodología de análisis y funcionamiento a la robótica. Este se ha centrado especialmente en la nevegación de los robots aéreos, diseñando e implementado procedimientos de inspiración humana para garantizar la seguridad de la misma. Para ello se han estudiado y evaluado los mecanismos de percepción, cognición y reacción humanas en relación al manejo de riesgos. También se ha analizado como los estímulos son capturados, procesados y transformados por condicionantes psicológicos, sociológicos y antropológicos de los seres humanos. Finalmente, también se ha analizado como estos factores motivan y descandenan las reacciones humanas frente a los peligros. Como resultado de este estudio, todos estos procesos, comportamientos y condicionantes de la conducta humana se han reproducido en un framework que se ha estructurado basadandose en factores análogos. Este emplea el conocimiento obtenido experimentalmente en forma de algoritmos, técnicas y estrategias, emulando el comportamiento humano en las mismas circunstancias. Diseñado, implementeado y validado tanto en simulación como con datos reales, este framework propone una manera innovadora -tanto en metodología como en procedimiento- de entender y reaccionar frente a las amenazas potenciales de una misión robótica. ABSTRACT Robotics has undergone a great revolution in the last decades. Nowadays this technology is able to perform really complex tasks with a high degree of accuracy and speed, however this is only true in precisely defined situations with fully controlled variables. Since the real world is dynamic, changing and unstructured, flexible and non context-dependent systems are required. The ability to understand situations, acknowledge changes and balance reactions is required by robots to successfully interact with their surroundings in a fully autonomous fashion. In fact, it is those very processes that define human interactions with the environment. Social relationships, driving or risk/incertitude management... in all these activities and systems, context understanding and adaptability are what allow human beings to survive: contrarily to the traditional robotics, people do not evaluate obstacles according to their position but according to the potential risk their presence imply. In this sense, human perception looks for information which goes beyond location, speed and dynamics (the usual data used in traditional obstacle avoidance systems). Specific features in the behaviour of a particular element allows the understanding of that element’s nature and therefore the comprehension of the risk posed by it. This process defines the second main difference between traditional obstacle avoidance systems and human behaviour: the ability to understand a situation/scenario allows to get to know the implications of the elements and their relationship with the observer. Establishing these semantic relationships -named cognition- is the only way to estimate the actual danger level of an element. Furthermore, only the application of this knowledge allows the generation of coherent, suitable and adjusted responses to deal with any risk faced. The research presented in this thesis summarizes the work done towards translating these human cognitive/reasoning procedures to the field of robotics. More specifically, the work done has been focused on employing human-based methodologies to enable aerial robots to navigate safely. To this effect, human perception, cognition and reaction processes concerning risk management have been experimentally studied; as well as the acquisition and processing of stimuli. How psychological, sociological and anthropological factors modify, balance and give shape to those stimuli has been researched. And finally, the way in which these factors motivate the human behaviour according to different mindsets and priorities has been established. This associative workflow has been reproduced by establishing an equivalent structure and defining similar factors and sources. Besides, all the knowledge obtained experimentally has been applied in the form of algorithms, techniques and strategies which emulate the analogous human behaviours. As a result, a framework capable of understanding and reacting in response to stimuli has been implemented and validated.