9 resultados para nose breathing
em Universidad Politécnica de Madrid
Resumo:
In this work, we present a novel method to compensate the movement in images acquired during free breathing using first-pass gadolinium enhanced, myocardial perfusion magnetic resonance imaging (MRI). First, we use independent component analysis (ICA) to identify the optimal number of independent components (ICs) that separate the breathing motion from the intensity change induced by the contrast agent. Then, synthetic images are created by recombining the ICs, but other then in previously published work (Milles et al. 2008), we omit the component related to motion, and therefore, the resulting reference image series is free of motion. Motion compensation is then achieved by using a multi-pass non-rigid image registration scheme. We tested our method on 15 distinct image series (5 patients) consisting of 58 images each and we validated our method by comparing manually tracked intensity profiles of the myocardial sections to automatically generated ones before and after registration. The average correlation to the manually obtained curves before registration 0:89 0:11 was increased to 0:98 0:02
Resumo:
An aerodynamic optimization of the train aerodynamic characteristics in term of front wind action sensitivity is carried out in this paper. In particular, a genetic algorithm (GA) is used to perform a shape optimization study of a high-speed train nose. The nose is parametrically defined via Bézier Curves, including a wider range of geometries in the design space as possible optimal solutions. Using a GA, the main disadvantage to deal with is the large number of evaluations need before finding such optimal. Here it is proposed the use of metamodels to replace Navier-Stokes solver. Among all the posibilities, Rsponse Surface Models and Artificial Neural Networks (ANN) are considered. Best results of prediction and generalization are obtained with ANN and those are applied in GA code. The paper shows the feasibility of using GA in combination with ANN for this problem, and solutions achieved are included.
Resumo:
Images acquired during free breathing using first-pass gadolinium-enhanced myocardial perfusion magnetic resonance imaging (MRI) exhibit a quasiperiodic motion pattern that needs to be compensated for if a further automatic analysis of the perfusion is to be executed. In this work, we present a method to compensate this movement by combining independent component analysis (ICA) and image registration: First, we use ICA and a time?frequency analysis to identify the motion and separate it from the intensity change induced by the contrast agent. Then, synthetic reference images are created by recombining all the independent components but the one related to the motion. Therefore, the resulting image series does not exhibit motion and its images have intensities similar to those of their original counterparts. Motion compensation is then achieved by using a multi-pass image registration procedure. We tested our method on 39 image series acquired from 13 patients, covering the basal, mid and apical areas of the left heart ventricle and consisting of 58 perfusion images each. We validated our method by comparing manually tracked intensity profiles of the myocardial sections to automatically generated ones before and after registration of 13 patient data sets (39 distinct slices). We compared linear, non-linear, and combined ICA based registration approaches and previously published motion compensation schemes. Considering run-time and accuracy, a two-step ICA based motion compensation scheme that first optimizes a translation and then for non-linear transformation performed best and achieves registration of the whole series in 32 ± 12 s on a recent workstation. The proposed scheme improves the Pearsons correlation coefficient between manually and automatically obtained time?intensity curves from .84 ± .19 before registration to .96 ± .06 after registration
Resumo:
An aerodynamic optimization of the ICE 2 high-speed train nose in term of front wind action sensitivity is carried out in this paper. The nose is parametrically defined by Be?zier Curves, and a three-dimensional representation of the nose is obtained using thirty one design variables. This implies a more complete parametrization, allowing the representation of a real model. In order to perform this study a genetic algorithm (GA) is used. Using a GA involves a large number of evaluations before finding such optimal. Hence it is proposed the use of metamodels or surrogate models to replace Navier-Stokes solver and speed up the optimization process. Adaptive sampling is considered to optimize surrogate model fitting and minimize computational cost when dealing with a very large number of design parameters. The paper introduces the feasi- bility of using GA in combination with metamodels for real high-speed train geometry optimization.
Resumo:
La influencia de la aerodinámica en el diseño de los trenes de alta velocidad, unida a la necesidad de resolver nuevos problemas surgidos con el aumento de la velocidad de circulación y la reducción de peso del vehículo, hace evidente el interés de plantear un estudio de optimización que aborde tales puntos. En este contexto, se presenta en esta tesis la optimización aerodinámica del testero de un tren de alta velocidad, llevada a cabo mediante el uso de métodos de optimización avanzados. Entre estos métodos, se ha elegido aquí a los algoritmos genéticos y al método adjunto como las herramientas para llevar a cabo dicha optimización. La base conceptual, las características y la implementación de los mismos se detalla a lo largo de la tesis, permitiendo entender los motivos de su elección, y las consecuencias, en términos de ventajas y desventajas que cada uno de ellos implican. El uso de los algorimos genéticos implica a su vez la necesidad de una parametrización geométrica de los candidatos a óptimo y la generación de un modelo aproximado que complementa al método de optimización. Estos puntos se describen de modo particular en el primer bloque de la tesis, enfocada a la metodología seguida en este estudio. El segundo bloque se centra en la aplicación de los métodos a fin de optimizar el comportamiento aerodinámico del tren en distintos escenarios. Estos escenarios engloban los casos más comunes y también algunos de los más exigentes a los que hace frente un tren de alta velocidad: circulación en campo abierto con viento frontal o viento lateral, y entrada en túnel. Considerando el caso de viento frontal en campo abierto, los dos métodos han sido aplicados, permitiendo una comparación de las diferentes metodologías, así como el coste computacional asociado a cada uno, y la minimización de la resistencia aerodinámica conseguida en esa optimización. La posibilidad de evitar parametrizar la geometría y, por tanto, reducir el coste computacional del proceso de optimización es la característica más significativa de los métodos adjuntos, mientras que en el caso de los algoritmos genéticos se destaca la simplicidad y capacidad de encontrar un óptimo global en un espacio de diseño multi-modal o de resolver problemas multi-objetivo. El caso de viento lateral en campo abierto considera nuevamente los dos métoxi dos de optimización anteriores. La parametrización se ha simplificado en este estudio, lo que notablemente reduce el coste numérico de todo el estudio de optimización, a la vez que aún recoge las características geométricas más relevantes en un tren de alta velocidad. Este análisis ha permitido identificar y cuantificar la influencia de cada uno de los parámetros geométricos incluídos en la parametrización, y se ha observado que el diseño de la arista superior a barlovento es fundamental, siendo su influencia mayor que la longitud del testero o que la sección frontal del mismo. Finalmente, se ha considerado un escenario más a fin de validar estos métodos y su capacidad de encontrar un óptimo global. La entrada de un tren de alta velocidad en un túnel es uno de los casos más exigentes para un tren por el pico de sobrepresión generado, el cual afecta a la confortabilidad del pasajero, así como a la estabilidad del vehículo y al entorno próximo a la salida del túnel. Además de este problema, otro objetivo a minimizar es la resistencia aerodinámica, notablemente superior al caso de campo abierto. Este problema se resuelve usando algoritmos genéticos. Dicho método permite obtener un frente de Pareto donde se incluyen el conjunto de óptimos que minimizan ambos objetivos. ABSTRACT Aerodynamic design of trains influences several aspects of high-speed trains performance in a very significant level. In this situation, considering also that new aerodynamic problems have arisen due to the increase of the cruise speed and lightness of the vehicle, it is evident the necessity of proposing an optimization study concerning the train aerodynamics. Thus, the aerodynamic optimization of the nose shape of a high-speed train is presented in this thesis. This optimization is based on advanced optimization methods. Among these methods, genetic algorithms and the adjoint method have been selected. A theoretical description of their bases, the characteristics and the implementation of each method is detailed in this thesis. This introduction permits understanding the causes of their selection, and the advantages and drawbacks of their application. The genetic algorithms requirethe geometrical parameterization of any optimal candidate and the generation of a metamodel or surrogate model that complete the optimization process. These points are addressed with a special attention in the first block of the thesis, focused on the methodology considered in this study. The second block is referred to the use of these methods with the purpose of optimizing the aerodynamic performance of a high-speed train in several scenarios. These scenarios englobe the most representative operating conditions of high-speed trains, and also some of the most exigent train aerodynamic problems: front wind and cross-wind situations in open air, and the entrance of a high-speed train in a tunnel. The genetic algorithms and the adjoint method have been applied in the minimization of the aerodynamic drag on the train with front wind in open air. The comparison of these methods allows to evaluate the methdology and computational cost of each one, as well as the resulting minimization of the aerodynamic drag. Simplicity and robustness, the straightforward realization of a multi-objective optimization, and the capability of searching a global optimum are the main attributes of genetic algorithm. However, the requirement of geometrically parameterize any optimal candidate is a significant drawback that is avoided with the use of the adjoint method. This independence of the number of design variables leads to a relevant reduction of the pre-processing and computational cost. Considering the cross-wind stability, both methods are used again for the minimization of the side force. In this case, a simplification of the geometric parameterization of the train nose is adopted, what dramatically reduces the computational cost of the optimization process. Nevertheless, some of the most important geometrical characteristics are still described with this simplified parameterization. This analysis identifies and quantifies the influence of each design variable on the side force on the train. It is observed that the A-pillar roundness is the most demanding design parameter, with a more important effect than the nose length or the train cross-section area. Finally, a third scenario is considered for the validation of these methods in the aerodynamic optimization of a high-speed train. The entrance of a train in a tunnel is one of the most exigent train aerodynamic problems. The aerodynamic consequences of high-speed trains running in a tunnel are basically resumed in two correlated phenomena, the generation of pressure waves and an increase in aerodynamic drag. This multi-objective optimization problem is solved with genetic algorithms. The result is a Pareto front where a set of optimal solutions that minimize both objectives.
Resumo:
Desde la aparición del turborreactor, el motor aeróbico con turbomaquinaria ha demostrado unas prestaciones excepcionales en los regímenes subsónico y supersónico bajo. No obstante, la operación a velocidades superiores requiere sistemas más complejos y pesados, lo cual ha imposibilitado la ejecución de estos conceptos. Los recientes avances tecnológicos, especialmente en materiales ligeros, han restablecido el interés por los motores de ciclo combinado. La simulación numérica de estos nuevos conceptos es esencial para estimar las prestaciones de la planta propulsiva, así como para abordar las dificultades de integración entre célula y motor durante las primeras etapas de diseño. Al mismo tiempo, la evaluación de estos extraordinarios motores requiere una metodología de análisis distinta. La tesis doctoral versa sobre el diseño y el análisis de los mencionados conceptos propulsivos mediante el modelado numérico y la simulación dinámica con herramientas de vanguardia. Las distintas arquitecturas presentadas por los ciclos combinados basados en sendos turborreactor y motor cohete, así como los diversos sistemas comprendidos en cada uno de ellos, hacen necesario establecer una referencia común para su evaluación. Es más, la tendencia actual hacia aeronaves "más eléctricas" requiere una nueva métrica para juzgar la aptitud de un proceso de generación de empuje en el que coexisten diversas formas de energía. A este respecto, la combinación del Primer y Segundo Principios define, en un marco de referencia absoluto, la calidad de la trasferencia de energía entre los diferentes sistemas. Esta idea, que se ha estado empleando desde hace mucho tiempo en el análisis de plantas de potencia terrestres, ha sido extendida para relacionar la misión de la aeronave con la ineficiencia de cada proceso involucrado en la generación de empuje. La metodología se ilustra mediante el estudio del motor de ciclo combinado variable de una aeronave para el crucero a Mach 5. El diseño de un acelerador de ciclo combinado basado en el turborreactor sirve para subrayar la importancia de la integración del motor y la célula. El diseño está limitado por la trayectoria ascensional y el espacio disponible en la aeronave de crucero supersónico. Posteriormente se calculan las prestaciones instaladas de la planta propulsiva en función de la velocidad y la altitud de vuelo y los parámetros de control del motor: relación de compresión, relación aire/combustible y área de garganta. ABSTRACT Since the advent of the turbojet, the air-breathing engine with rotating machinery has demonstrated exceptional performance in the subsonic and low supersonic regimes. However, the operation at higher speeds requires further system complexity and weight, which so far has impeded the realization of these concepts. Recent technology developments, especially in lightweight materials, have restored the interest towards combined-cycle engines. The numerical simulation of these new concepts is essential at the early design stages to compute a first estimate of the engine performance in addition to addressing airframe-engine integration issues. In parallel, a different analysis methodology is required to evaluate these unconventional engines. The doctoral thesis concerns the design and analysis of the aforementioned engine concepts by means of numerical modeling and dynamic simulation with state-of-the-art tools. A common reference is needed to evaluate the different architectures of the turbine and the rocket-based combined-cycle engines as well as the various systems within each one of them. Furthermore, the actual trend towards more electric aircraft necessitates a common metric to judge the suitability of a thrust generation process where different forms of energy coexist. In line with this, the combination of the First and the Second Laws yields the quality of the energy being transferred between the systems on an absolute reference frame. This idea, which has been since long applied to the analysis of on-ground power plants, was extended here to relate the aircraft mission with the inefficiency of every process related to the thrust generation. The methodology is illustrated with the study of a variable- combined-cycle engine for a Mach 5 cruise aircraft. The design of a turbine-based combined-cycle booster serves to highlight the importance of the engine-airframe integration. The design is constrained by the ascent trajectory and the allocated space in the supersonic cruise aircraft. The installed performance of the propulsive plant is then computed as a function of the flight speed and altitude and the engine control parameters: pressure ratio, air-to-fuel ratio and throat area.
Resumo:
The optimization of the nose shape of a high-speed train entering a tunnel has been performed using genetic algorithms(GA).This optimization method requires the parameterization of each optimal candidate as a design vector.The geometrical parameterization of the nose has been defined using three design variables that include the most characteristic geometrical factors affecting the compression wave generated at the entry of the train and the aerodynamic drag of the train.
Resumo:
When dealing with the design of a high-speed train, a multiobjective shape optimization problem is formulated, as these vehicles are object of many aerodynamic problems which are known to be in conflict. More mobility involves an increase in both the cruise speed and lightness, and these requirements directly influence the stability and the ride comfort of the passengers when the train is subjected to a side wind. Thus, crosswind stability plays a more relevant role among the aerodynamic objectives to be optimized. An extensive research activity is observed on aerodynamic response in crosswind conditions.
Resumo:
Optimización multi-objetivo frente a varias direcciones del viento incidente del testero de un tren de alta velocidad