19 resultados para non-stationary loads
em Universidad Politécnica de Madrid
Resumo:
This research proposes a generic methodology for dimensionality reduction upon time-frequency representations applied to the classification of different types of biosignals. The methodology directly deals with the highly redundant and irrelevant data contained in these representations, combining a first stage of irrelevant data removal by variable selection, with a second stage of redundancy reduction using methods based on linear transformations. The study addresses two techniques that provided a similar performance: the first one is based on the selection of a set of the most relevant time?frequency points, whereas the second one selects the most relevant frequency bands. The first methodology needs a lower quantity of components, leading to a lower feature space; but the second improves the capture of the time-varying dynamics of the signal, and therefore provides a more stable performance. In order to evaluate the generalization capabilities of the methodology proposed it has been applied to two types of biosignals with different kinds of non-stationary behaviors: electroencephalographic and phonocardiographic biosignals. Even when these two databases contain samples with different degrees of complexity and a wide variety of characterizing patterns, the results demonstrate a good accuracy for the detection of pathologies, over 98%.The results open the possibility to extrapolate the methodology to the study of other biosignals.
Resumo:
Nonlinear analysis tools for studying and characterizing the dynamics of physiological signals have gained popularity, mainly because tracking sudden alterations of the inherent complexity of biological processes might be an indicator of altered physiological states. Typically, in order to perform an analysis with such tools, the physiological variables that describe the biological process under study are used to reconstruct the underlying dynamics of the biological processes. For that goal, a procedure called time-delay or uniform embedding is usually employed. Nonetheless, there is evidence of its inability for dealing with non-stationary signals, as those recorded from many physiological processes. To handle with such a drawback, this paper evaluates the utility of non-conventional time series reconstruction procedures based on non uniform embedding, applying them to automatic pattern recognition tasks. The paper compares a state of the art non uniform approach with a novel scheme which fuses embedding and feature selection at once, searching for better reconstructions of the dynamics of the system. Moreover, results are also compared with two classic uniform embedding techniques. Thus, the goal is comparing uniform and non uniform reconstruction techniques, including the one proposed in this work, for pattern recognition in biomedical signal processing tasks. Once the state space is reconstructed, the scheme followed characterizes with three classic nonlinear dynamic features (Largest Lyapunov Exponent, Correlation Dimension and Recurrence Period Density Entropy), while classification is carried out by means of a simple k-nn classifier. In order to test its generalization capabilities, the approach was tested with three different physiological databases (Speech Pathologies, Epilepsy and Heart Murmurs). In terms of the accuracy obtained to automatically detect the presence of pathologies, and for the three types of biosignals analyzed, the non uniform techniques used in this work lightly outperformed the results obtained using the uniform methods, suggesting their usefulness to characterize non-stationary biomedical signals in pattern recognition applications. On the other hand, in view of the results obtained and its low computational load, the proposed technique suggests its applicability for the applications under study.
Resumo:
This study presents a robust method for ground plane detection in vision-based systems with a non-stationary camera. The proposed method is based on the reliable estimation of the homography between ground planes in successive images. This homography is computed using a feature matching approach, which in contrast to classical approaches to on-board motion estimation does not require explicit ego-motion calculation. As opposed to it, a novel homography calculation method based on a linear estimation framework is presented. This framework provides predictions of the ground plane transformation matrix that are dynamically updated with new measurements. The method is specially suited for challenging environments, in particular traffic scenarios, in which the information is scarce and the homography computed from the images is usually inaccurate or erroneous. The proposed estimation framework is able to remove erroneous measurements and to correct those that are inaccurate, hence producing a reliable homography estimate at each instant. It is based on the evaluation of the difference between the predicted and the observed transformations, measured according to the spectral norm of the associated matrix of differences. Moreover, an example is provided on how to use the information extracted from ground plane estimation to achieve object detection and tracking. The method has been successfully demonstrated for the detection of moving vehicles in traffic environments.
Resumo:
The electroencephalograph (EEG) signal is one of the most widely used signals in the biomedicine field due to its rich information about human tasks. This research study describes a new approach based on i) build reference models from a set of time series, based on the analysis of the events that they contain, is suitable for domains where the relevant information is concentrated in specific regions of the time series, known as events. In order to deal with events, each event is characterized by a set of attributes. ii) Discrete wavelet transform to the EEG data in order to extract temporal information in the form of changes in the frequency domain over time- that is they are able to extract non-stationary signals embedded in the noisy background of the human brain. The performance of the model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed scheme has potential in classifying the EEG signals.
Resumo:
Rms voltage regulation may be an attractive possibility for controlling power inverters. Combined with a Hall Effect sensor for current control, it keeps its parallel operation capability while increasing its noise immunity, which may lead to a reduction of the Total Harmonic Distortion (THD). Besides, as voltage regulation is designed in DC, a simple PI regulator can provide accurate voltage tracking. Nevertheless, this approach does not lack drawbacks. Its narrow voltage bandwidth makes transients last longer and it increases the voltage THD when feeding non-linear loads, such as rectifying stages. On the other hand, the implementation can fall into offset voltage error. Furthermore, the information of the output voltage phase is hidden for the control as well, making the synchronization of a 3-phase setup not trivial. This paper explains the concept, design and implementation of the whole control scheme, in an on board inverter able to run in parallel and within a 3-phase setup. Special attention is paid to solve the problems foreseen at implementation level: a third analog loop accounts for the offset level is added and a digital algorithm guarantees 3-phase voltage synchronization.
Resumo:
Con esta disertación se pretenden resolver algunos de los problemas encontrados actualmente en la recepción de señales de satélites bajo dos escenarios particularmente exigentes: comunicaciones de Espacio Profundo y en banda Ka. Las comunicaciones con sondas de Espacio Profundo necesitan grandes aperturas en tierra para poder incrementar la velocidad de datos. La opción de usar antennas con diámetro mayor de 35 metros tiene serios problemas, pues antenas tan grandes son caras de mantener, difíciles de apuntar, pueden tener largos tiempo de reparación y además tienen una efeciencia decreciente a medida que se utilizan bandas más altas. Soluciones basadas en agrupaciones de antenas de menor tamaño (12 ó 35 metros) son mas ecónomicas y factibles técnicamente. Las comunicaciones en banda Ka tambien pueden beneficiarse de la combinación de múltiples antennas. Las antenas de menor tamaño son más fáciles de apuntar y además tienen un campo de visión mayor. Además, las técnicas de diversidad espacial pueden ser reemplazadas por una combinación de antenas para así incrementar el margen del enlace. La combinación de antenas muy alejadas sobre grandes anchos de banda, bien por recibir una señal de banda ancha o múltiples de banda estrecha, es complicada técnicamente. En esta disertación se demostrará que el uso de conformador de haz en el dominio de la frecuencia puede ayudar a relajar los requisitos de calibración y, al mismo tiempo, proporcionar un mayor campo de visión y mayores capacidades de ecualización. Para llevar esto a cabo, el trabajo ha girado en torno a tres aspectos fundamentales. El primero es la investigación bibliográfica del trabajo existente en este campo. El segundo es el modelado matemático del proceso de combinación y el desarrollo de nuevos algoritmos de estimación de fase y retardo. Y el tercero es la propuesta de nuevas aplicaciones en las que usar estas técnicas. La investigación bibliográfica se centra principalmente en los capítulos 1, 2, 4 y 5. El capítulo 1 da una breve introducción a la teoría de combinación de antenas de gran apertura. En este capítulo, los principales campos de aplicación son descritos y además se establece la necesidad de compensar retardos en subbandas. La teoría de bancos de filtros se expone en el capítulo 2; se selecciona y simula un banco de filtros modulado uniformemente con fase lineal. Las propiedades de convergencia de varios filtros adaptativos se muestran en el capítulo 4. Y finalmente, las técnicas de estimación de retardo son estudiadas y resumidas en el capítulo 5. Desde el punto de vista matemático, las principales contribución de esta disertación han sido: • Sección 3.1.4. Cálculo de la desviación de haz de un conformador de haz con compensación de retardo en pasos discretos en frecuencia intermedia. • Sección 3.2. Modelo matemático de un conformador de haz en subbandas. • Sección 3.2.2. Cálculo de la desviación de haz de un conformador de haz en subbandas con un buffer de retardo grueso. • Sección 3.2.4. Análisis de la influencia de los alias internos en la compensación en subbandas de retardo y fase. • Sección 3.2.4.2. Cálculo de la desviación de haz de un conformador de haz con compensación de retardo en subbandas. • Sección 3.2.6. Cálculo de la ganancia de relación señal a ruido de la agrupación de antenas en cada una de las subbandas. • Sección 3.3.2. Modelado de la función de transferencia de la agrupación de antenas bajo errores de estimación de retardo. • Sección 3.3.3. Modelado de los efectos de derivas de fase y retardo entre actualizaciones de las estimaciones. • Sección 3.4. Cálculo de la directividad de la agrupación de antenas con y sin compensación de retardos en subbandas. • Sección 5.2.6. Desarrollo de un algorimo para estimar la fase y el retardo entre dos señales a partir de su descomposición de subbandas bajo entornos estacionarios. • Sección 5.5.1. Desarrollo de un algorimo para estimar la fase, el retardo y la deriva de retardo entre dos señales a partir de su descomposición de subbandas bajo entornos no estacionarios. Las aplicaciones que se pueden beneficiar de estas técnicas son descritas en el capítulo 7: • Sección 6.2. Agrupaciones de antenas para comunicaciones de Espacio Profundo con capacidad multihaz y sin requisitos de calibración geométrica o de retardo de grupo. • Sección 6.2.6. Combinación en banda ancha de antenas con separaciones de miles de kilómetros, para recepción de sondas de espacio profundo. • Secciones 6.4 and 6.3. Combinación de estaciones remotas en banda Ka en escenarios de diversidad espacial, para recepción de satélites LEO o GEO. • Sección 6.3. Recepción de satélites GEO colocados con arrays de antenas multihaz. Las publicaciones a las que ha dado lugar esta tesis son las siguientes • A. Torre. Wideband antenna arraying over long distances. Interplanetary Progress Report, 42-194:1–18, 2013. En esta pulicación se resumen los resultados de las secciones 3.2, 3.2.2, 3.3.2, los algoritmos en las secciones 5.2.6, 5.5.1 y la aplicación destacada en 6.2.6. • A. Torre. Reception of wideband signals from geostationary collocated satellites with antenna arrays. IET Communications, Vol. 8, Issue 13:2229–2237, September, 2014. En esta segunda se muestran los resultados de la sección 3.2.4, el algoritmo en la sección 5.2.6.1 , y la aplicación mostrada en 6.3. ABSTRACT This dissertation is an attempt to solve some of the problems found nowadays in the reception of satellite signals under two particular challenging scenarios: Deep Space and Ka-band communications. Deep Space communications require from larger apertures on ground in order to increase the data rate. The option of using single dishes with diameters larger than 35 meters has severe drawbacks. Such antennas are expensive to maintain, prone to long downtimes, difficult to point and have a degraded performance in high frequency bands. The array solution, either with 12 meter or 35 meter antennas is deemed to be the most economically and technically feasible solution. Ka-band communications can also benefit from antenna arraying technology. The smaller aperture antennas that make up the array are easier to point and have a wider field of view allowing multiple simultaneous beams. Besides, site diversity techniques can be replaced by pure combination in order to increase link margin. Combination of far away antennas over a large bandwidth, either because a wideband signal or multiple narrowband signals are received, is a demanding task. This dissertation will show that the use of frequency domain beamformers with subband delay compensation can help to ease calibration requirements and, at the same time, provide with a wider field of view and enhanced equalization capabilities. In order to do so, the work has been focused on three main aspects. The first one is the bibliographic research of previous work on this subject. The second one is the mathematical modeling of the array combination process and the development of new phase/delay estimation algorithms. And the third one is the proposal of new applications in which these techniques can be used. Bibliographic research is mainly done in chapters 1, 2, 4 and 5. Chapter 1 gives a brief introduction to previous work in the field of large aperture antenna arraying. In this chapter, the main fields of application are described and the need for subband delay compensation is established. Filter bank theory is shown in chapter 2; a linear phase uniform modulated filter bank is selected and simulated under diverse conditions. The convergence properties of several adaptive filters are shown in chapter 4. Finally, delay estimation techniques are studied and summarized in chapter 5. From a mathematical point of view, the main contributions of this dissertation have been: • Section 3.1.4. Calculation of beam squint of an IF beamformer with delay compensation at discrete time steps. • Section 3.2. Establishment of a mathematical model of a subband beamformer. • Section 3.2.2. Calculation of beam squint in a subband beamformer with a coarse delay buffer. • Section 3.2.4. Analysis of the influence of internal aliasing on phase and delay subband compensation. • Section 3.2.4.2. Calculation of beam squint of a beamformer with subband delay compensation. • Section 3.2.6. Calculation of the array SNR gain at each of the subbands. • Section 3.3.2. Modeling of the transfer function of an array subject to delay estimation errors. • Section 3.3.3. Modeling of the effects of phase and delay drifts between estimation updates. • Section 3.4. Calculation of array directivity with and without subband delay compensation. • Section 5.2.6. Development of an algorithm to estimate relative delay and phase between two signals from their subband decomposition in stationary environments. • Section 5.5.1. Development of an algorithm to estimate relative delay rate, delay and phase between two signals from their subband decomposition in non stationary environments. The applications that can benefit from these techniques are described in chapter 7: • Section 6.2. Arrays of antennas for Deep Space communications with multibeam capacity and without geometric or group delay calibration requirement. • Section 6.2.6. Wideband antenna arraying over long distances, in the range of thousands of kilometers, for reception of Deep Space probes. • Sections 6.4 y 6.3. Combination of remote stations in Ka-band site diversity scenarios for reception of LEO or GEO satellites. • Section 6.3. Reception of GEO collocated satellites with multibeam antenna arrays. The publications that have been made from the work in this dissertation are • A. Torre. Wideband antenna arraying over long distances. Interplanetary Progress Report, 42-194:1–18, 2013. This article shows the results in sections 3.2, 3.2.2, 3.3.2, the algorithms in sections 5.2.6, 5.5.1 and the application in section 6.2.6. • A. Torre. Reception of wideband signals from geostationary collocated satellites with antenna arrays. IET Communications, Vol. 8, Issue 13:2229–2237, September, 2014. This second article shows among others the results in section 3.2.4, the algorithm in section 5.2.6.1 , and the application in section 6.3.
Resumo:
Current collection by positively polarized cylindrical Langmuir probes immersed in flowing plasmas is analyzed using a non-stationary direct Vlasov-Poisson code. A detailed description of plasma density spatial structure as a function of the probe-to-plasma relative velocity U is presented. Within the considered parametric domain, the well-known electron density maximum close to the probe is weakly affected by U. However, in the probe wake side, the electron density minimum becomes deeper as U increases and a rarified plasma region appears. Sheath radius is larger at the wake than at the front side. Electron and ion distribution functions show specific features that are the signature of probe motion. In particular, the ion distribution function at the probe front side exhibits a filament with positive radial velocity. It corresponds to a population of rammed ions that were reflected by the electric field close to the positively biased probe. Numerical simulations reveal that two populations of trapped electrons exist: one orbiting around the probe and the other with trajectories confined at the probe front side. The latter helps to neutralize the reflected ions, thus explaining a paradox in past probe theory.
Resumo:
La presente Tesis constituye un avance en el conocimiento de los efectos de la variabilidad climática en los cultivos en la Península Ibérica (PI). Es bien conocido que la temperatura del océano, particularmente de la región tropical, es una de las variables más convenientes para ser utilizado como predictor climático. Los océanos son considerados como la principal fuente de almacenamiento de calor del planeta debido a la alta capacidad calorífica del agua. Cuando se libera esta energía, altera los regímenes globales de circulación atmosférica por mecanismos de teleconexión. Estos cambios en la circulación general de la atmósfera afectan a la temperatura, precipitación, humedad, viento, etc., a escala regional, los cuales afectan al crecimiento, desarrollo y rendimiento de los cultivos. Para el caso de Europa, esto implica que la variabilidad atmosférica en una región específica se asocia con la variabilidad de otras regiones adyacentes y/o remotas, como consecuencia Europa está siendo afectada por los patrones de circulaciones globales, que a su vez, se ven afectados por patrones oceánicos. El objetivo general de esta tesis es analizar la variabilidad del rendimiento de los cultivos y su relación con la variabilidad climática y teleconexiones, así como evaluar su predictibilidad. Además, esta Tesis tiene como objetivo establecer una metodología para estudiar la predictibilidad de las anomalías del rendimiento de los cultivos. El análisis se centra en trigo y maíz como referencia para otros cultivos de la PI, cultivos de invierno en secano y cultivos de verano en regadío respectivamente. Experimentos de simulación de cultivos utilizando una metodología en cadena de modelos (clima + cultivos) son diseñados para evaluar los impactos de los patrones de variabilidad climática en el rendimiento y su predictibilidad. La presente Tesis se estructura en dos partes: La primera se centra en el análisis de la variabilidad del clima y la segunda es una aplicación de predicción cuantitativa de cosechas. La primera parte está dividida en 3 capítulos y la segundo en un capitulo cubriendo los objetivos específicos del presente trabajo de investigación. Parte I. Análisis de variabilidad climática El primer capítulo muestra un análisis de la variabilidad del rendimiento potencial en una localidad como indicador bioclimático de las teleconexiones de El Niño con Europa, mostrando su importancia en la mejora de predictibilidad tanto en clima como en agricultura. Además, se presenta la metodología elegida para relacionar el rendimiento con las variables atmosféricas y oceánicas. El rendimiento de los cultivos es parcialmente determinado por la variabilidad climática atmosférica, que a su vez depende de los cambios en la temperatura de la superficie del mar (TSM). El Niño es el principal modo de variabilidad interanual de la TSM, y sus efectos se extienden en todo el mundo. Sin embargo, la predictibilidad de estos impactos es controversial, especialmente aquellos asociados con la variabilidad climática Europea, que se ha encontrado que es no estacionaria y no lineal. Este estudio mostró cómo el rendimiento potencial de los cultivos obtenidos a partir de datos de reanálisis y modelos de cultivos sirve como un índice alternativo y más eficaz de las teleconexiones de El Niño, ya que integra las no linealidades entre las variables climáticas en una única serie temporal. Las relaciones entre El Niño y las anomalías de rendimiento de los cultivos son más significativas que las contribuciones individuales de cada una de las variables atmosféricas utilizadas como entrada en el modelo de cultivo. Además, la no estacionariedad entre El Niño y la variabilidad climática europea se detectan con mayor claridad cuando se analiza la variabilidad de los rendimiento de los cultivos. La comprensión de esta relación permite una cierta predictibilidad hasta un año antes de la cosecha del cultivo. Esta predictibilidad no es constante, sino que depende tanto la modulación de la alta y baja frecuencia. En el segundo capítulo se identifica los patrones oceánicos y atmosféricos de variabilidad climática que afectan a los cultivos de verano en la PI. Además, se presentan hipótesis acerca del mecanismo eco-fisiológico a través del cual el cultivo responde. Este estudio se centra en el análisis de la variabilidad del rendimiento de maíz en la PI para todo el siglo veinte, usando un modelo de cultivo calibrado en 5 localidades españolas y datos climáticos de reanálisis para obtener series temporales largas de rendimiento potencial. Este estudio evalúa el uso de datos de reanálisis para obtener series de rendimiento de cultivos que dependen solo del clima, y utilizar estos rendimientos para analizar la influencia de los patrones oceánicos y atmosféricos. Los resultados muestran una gran fiabilidad de los datos de reanálisis. La distribución espacial asociada a la primera componente principal de la variabilidad del rendimiento muestra un comportamiento similar en todos los lugares estudiados de la PI. Se observa una alta correlación lineal entre el índice de El Niño y el rendimiento, pero no es estacionaria en el tiempo. Sin embargo, la relación entre la temperatura del aire y el rendimiento se mantiene constante a lo largo del tiempo, siendo los meses de mayor influencia durante el período de llenado del grano. En cuanto a los patrones atmosféricos, el patrón Escandinavia presentó una influencia significativa en el rendimiento en PI. En el tercer capítulo se identifica los patrones oceánicos y atmosféricos de variabilidad climática que afectan a los cultivos de invierno en la PI. Además, se presentan hipótesis acerca del mecanismo eco-fisiológico a través del cual el cultivo responde. Este estudio se centra en el análisis de la variabilidad del rendimiento de trigo en secano del Noreste (NE) de la PI. La variabilidad climática es el principal motor de los cambios en el crecimiento, desarrollo y rendimiento de los cultivos, especialmente en los sistemas de producción en secano. En la PI, los rendimientos de trigo son fuertemente dependientes de la cantidad de precipitación estacional y la distribución temporal de las mismas durante el periodo de crecimiento del cultivo. La principal fuente de variabilidad interanual de la precipitación en la PI es la Oscilación del Atlántico Norte (NAO), que se ha relacionado, en parte, con los cambios en la temperatura de la superficie del mar en el Pacífico Tropical (El Niño) y el Atlántico Tropical (TNA). La existencia de cierta predictibilidad nos ha animado a analizar la posible predicción de los rendimientos de trigo en la PI utilizando anomalías de TSM como predictor. Para ello, se ha utilizado un modelo de cultivo (calibrado en dos localidades del NE de la PI) y datos climáticos de reanálisis para obtener series temporales largas de rendimiento de trigo alcanzable y relacionar su variabilidad con anomalías de la TSM. Los resultados muestran que El Niño y la TNA influyen en el desarrollo y rendimiento del trigo en el NE de la PI, y estos impactos depende del estado concurrente de la NAO. Aunque la relación cultivo-TSM no es igual durante todo el periodo analizado, se puede explicar por un mecanismo eco-fisiológico estacionario. Durante la segunda mitad del siglo veinte, el calentamiento (enfriamiento) en la superficie del Atlántico tropical se asocia a una fase negativa (positiva) de la NAO, que ejerce una influencia positiva (negativa) en la temperatura mínima y precipitación durante el invierno y, por lo tanto, aumenta (disminuye) el rendimiento de trigo en la PI. En relación con El Niño, la correlación más alta se observó en el período 1981 -2001. En estas décadas, los altos (bajos) rendimientos se asocian con una transición El Niño - La Niña (La Niña - El Niño) o con eventos de El Niño (La Niña) que están finalizando. Para estos eventos, el patrón atmosférica asociada se asemeja a la NAO, que también influye directamente en la temperatura máxima y precipitación experimentadas por el cultivo durante la floración y llenado de grano. Los co- efectos de los dos patrones de teleconexión oceánicos ayudan a aumentar (disminuir) la precipitación y a disminuir (aumentar) la temperatura máxima en PI, por lo tanto el rendimiento de trigo aumenta (disminuye). Parte II. Predicción de cultivos. En el último capítulo se analiza los beneficios potenciales del uso de predicciones climáticas estacionales (por ejemplo de precipitación) en las predicciones de rendimientos de trigo y maíz, y explora métodos para aplicar dichos pronósticos climáticos en modelos de cultivo. Las predicciones climáticas estacionales tienen un gran potencial en las predicciones de cultivos, contribuyendo de esta manera a una mayor eficiencia de la gestión agrícola, seguridad alimentaria y de subsistencia. Los pronósticos climáticos se expresan en diferentes formas, sin embargo todos ellos son probabilísticos. Para ello, se evalúan y aplican dos métodos para desagregar las predicciones climáticas estacionales en datos diarios: 1) un generador climático estocástico condicionado (predictWTD) y 2) un simple re-muestreador basado en las probabilidades del pronóstico (FResampler1). Los dos métodos se evaluaron en un caso de estudio en el que se analizaron los impactos de tres escenarios de predicciones de precipitación estacional (predicción seco, medio y lluvioso) en el rendimiento de trigo en secano, sobre las necesidades de riego y rendimiento de maíz en la PI. Además, se estimó el margen bruto y los riesgos de la producción asociada con las predicciones de precipitación estacional extremas (seca y lluviosa). Los métodos predWTD y FResampler1 usados para desagregar los pronósticos de precipitación estacional en datos diarios, que serán usados como inputs en los modelos de cultivos, proporcionan una predicción comparable. Por lo tanto, ambos métodos parecen opciones factibles/viables para la vinculación de los pronósticos estacionales con modelos de simulación de cultivos para establecer predicciones de rendimiento o las necesidades de riego en el caso de maíz. El análisis del impacto en el margen bruto de los precios del grano de los dos cultivos (trigo y maíz) y el coste de riego (maíz) sugieren que la combinación de los precios de mercado previstos y la predicción climática estacional pueden ser una buena herramienta en la toma de decisiones de los agricultores, especialmente en predicciones secas y/o localidades con baja precipitación anual. Estos métodos permiten cuantificar los beneficios y riesgos de los agricultores ante una predicción climática estacional en la PI. Por lo tanto, seríamos capaces de establecer sistemas de alerta temprana y diseñar estrategias de adaptación del manejo del cultivo para aprovechar las condiciones favorables o reducir los efectos de condiciones adversas. La utilidad potencial de esta Tesis es la aplicación de las relaciones encontradas para predicción de cosechas de la próxima campaña agrícola. Una correcta predicción de los rendimientos podría ayudar a los agricultores a planear con antelación sus prácticas agronómicas y todos los demás aspectos relacionados con el manejo de los cultivos. Esta metodología se puede utilizar también para la predicción de las tendencias futuras de la variabilidad del rendimiento en la PI. Tanto los sectores públicos (mejora de la planificación agrícola) como privados (agricultores, compañías de seguros agrarios) pueden beneficiarse de esta mejora en la predicción de cosechas. ABSTRACT The present thesis constitutes a step forward in advancing of knowledge of the effects of climate variability on crops in the Iberian Peninsula (IP). It is well known that ocean temperature, particularly the tropical ocean, is one of the most convenient variables to be used as climate predictor. Oceans are considered as the principal heat storage of the planet due to the high heat capacity of water. When this energy is released, it alters the global atmospheric circulation regimes by teleconnection1 mechanisms. These changes in the general circulation of the atmosphere affect the regional temperature, precipitation, moisture, wind, etc., and those influence crop growth, development and yield. For the case of Europe, this implies that the atmospheric variability in a specific region is associated with the variability of others adjacent and/or remote regions as a consequence of Europe being affected by global circulations patterns which, in turn, are affected by oceanic patterns. The general objective of this Thesis is to analyze the variability of crop yields at climate time scales and its relation to the climate variability and teleconnections, as well as to evaluate their predictability. Moreover, this Thesis aims to establish a methodology to study the predictability of crop yield anomalies. The analysis focuses on wheat and maize as a reference crops for other field crops in the IP, for winter rainfed crops and summer irrigated crops respectively. Crop simulation experiments using a model chain methodology (climate + crop) are designed to evaluate the impacts of climate variability patterns on yield and its predictability. The present Thesis is structured in two parts. The first part is focused on the climate variability analyses, and the second part is an application of the quantitative crop forecasting for years that fulfill specific conditions identified in the first part. This Thesis is divided into 4 chapters, covering the specific objectives of the present research work. Part I. Climate variability analyses The first chapter shows an analysis of potential yield variability in one location, as a bioclimatic indicator of the El Niño teleconnections with Europe, putting forward its importance for improving predictability in both climate and agriculture. It also presents the chosen methodology to relate yield with atmospheric and oceanic variables. Crop yield is partially determined by atmospheric climate variability, which in turn depends on changes in the sea surface temperature (SST). El Niño is the leading mode of SST interannual variability, and its impacts extend worldwide. Nevertheless, the predictability of these impacts is controversial, especially those associated with European climate variability, which have been found to be non-stationary and non-linear. The study showed how potential2 crop yield obtained from reanalysis data and crop models serves as an alternative and more effective index of El Niño teleconnections because it integrates the nonlinearities between the climate variables in a unique time series. The relationships between El Niño and crop yield anomalies are more significant than the individual contributions of each of the atmospheric variables used as input in the crop model. Additionally, the non-stationarities between El Niño and European climate variability are more clearly detected when analyzing crop-yield variability. The understanding of this relationship allows for some predictability up to one year before the crop is harvested. This predictability is not constant, but depends on both high and low frequency modulation. The second chapter identifies the oceanic and atmospheric patterns of climate variability affecting summer cropping systems in the IP. Moreover, hypotheses about the eco-physiological mechanism behind crop response are presented. It is focused on an analysis of maize yield variability in IP for the whole twenty century, using a calibrated crop model at five contrasting Spanish locations and reanalyses climate datasets to obtain long time series of potential yield. The study tests the use of reanalysis data for obtaining only climate dependent time series of simulated crop yield for the whole region, and to use these yield to analyze the influences of oceanic and atmospheric patterns. The results show a good reliability of reanalysis data. The spatial distribution of the leading principal component of yield variability shows a similar behaviour over all the studied locations in the IP. The strong linear correlation between El Niño index and yield is remarkable, being this relation non-stationary on time, although the air temperature-yield relationship remains on time, being the highest influences during grain filling period. Regarding atmospheric patterns, the summer Scandinavian pattern has significant influence on yield in IP. The third chapter identifies the oceanic and atmospheric patterns of climate variability affecting winter cropping systems in the IP. Also, hypotheses about the eco-physiological mechanism behind crop response are presented. It is focused on an analysis of rainfed wheat yield variability in IP. Climate variability is the main driver of changes in crop growth, development and yield, especially for rainfed production systems. In IP, wheat yields are strongly dependent on seasonal rainfall amount and temporal distribution of rainfall during the growing season. The major source of precipitation interannual variability in IP is the North Atlantic Oscillation (NAO) which has been related in part with changes in the Tropical Pacific (El Niño) and Atlantic (TNA) sea surface temperature (SST). The existence of some predictability has encouraged us to analyze the possible predictability of the wheat yield in the IP using SSTs anomalies as predictor. For this purpose, a crop model with a site specific calibration for the Northeast of IP and reanalysis climate datasets have been used to obtain long time series of attainable wheat yield and relate their variability with SST anomalies. The results show that El Niño and TNA influence rainfed wheat development and yield in IP and these impacts depend on the concurrent state of the NAO. Although crop-SST relationships do not equally hold on during the whole analyzed period, they can be explained by an understood and stationary ecophysiological mechanism. During the second half of the twenty century, the positive (negative) TNA index is associated to a negative (positive) phase of NAO, which exerts a positive (negative) influence on minimum temperatures (Tmin) and precipitation (Prec) during winter and, thus, yield increases (decreases) in IP. In relation to El Niño, the highest correlation takes place in the period 1981-2001. For these decades, high (low) yields are associated with an El Niño to La Niña (La Niña to El Niño) transitions or to El Niño events finishing. For these events, the regional associated atmospheric pattern resembles the NAO, which also influences directly on the maximum temperatures (Tmax) and precipitation experienced by the crop during flowering and grain filling. The co-effects of the two teleconnection patterns help to increase (decrease) the rainfall and decrease (increase) Tmax in IP, thus on increase (decrease) wheat yield. Part II. Crop forecasting The last chapter analyses the potential benefits for wheat and maize yields prediction from using seasonal climate forecasts (precipitation), and explores methods to apply such a climate forecast to crop models. Seasonal climate prediction has significant potential to contribute to the efficiency of agricultural management, and to food and livelihood security. Climate forecasts come in different forms, but probabilistic. For this purpose, two methods were evaluated and applied for disaggregating seasonal climate forecast into daily weather realizations: 1) a conditioned stochastic weather generator (predictWTD) and 2) a simple forecast probability resampler (FResampler1). The two methods were evaluated in a case study where the impacts of three scenarios of seasonal rainfall forecasts on rainfed wheat yield, on irrigation requirements and yields of maize in IP were analyzed. In addition, we estimated the economic margins and production risks associated with extreme scenarios of seasonal rainfall forecasts (dry and wet). The predWTD and FResampler1 methods used for disaggregating seasonal rainfall forecast into daily data needed by the crop simulation models provided comparable predictability. Therefore both methods seem feasible options for linking seasonal forecasts with crop simulation models for establishing yield forecasts or irrigation water requirements. The analysis of the impact on gross margin of grain prices for both crops and maize irrigation costs suggests the combination of market prices expected and the seasonal climate forecast can be a good tool in farmer’s decision-making, especially on dry forecast and/or in locations with low annual precipitation. These methodologies would allow quantifying the benefits and risks of a seasonal weather forecast to farmers in IP. Therefore, we would be able to establish early warning systems and to design crop management adaptation strategies that take advantage of favorable conditions or reduce the effect of adverse conditions. The potential usefulness of this Thesis is to apply the relationships found to crop forecasting on the next cropping season, suggesting opportunity time windows for the prediction. The methodology can be used as well for the prediction of future trends of IP yield variability. Both public (improvement of agricultural planning) and private (decision support to farmers, insurance companies) sectors may benefit from such an improvement of crop forecasting.
Resumo:
El Niño phenomenon is the leading mode of sea surface temperature interannual variability. It can affect weather patterns worldwide and therefore crop production. Crop models are useful tools for impact and predictability applications, allowing to obtain long time series of potential and attainable crop yield, unlike to available time series of observed crop yield for many countries. Using this tool, crop yield variability in a location of Iberia Peninsula (IP) has been previously studied, finding predictability from Pacific El Niño conditions. Nevertheless, the work has not been done for an extended area. The present work carries out an analysis of maize yield variability in IP for the whole twenty century, using a calibrated crop model at five contrasting Spanish locations and reanalyses climate datasets to obtain long time series of potential yield. The study tests the use of reanalysis data for obtaining only climate dependent time series of crop yield for the whole region, and to use these yield to analyze the influences of oceanic and atmospheric patterns. The results show a good reliability of reanalysis data. The spatial distribution of the leading principal component of yield variability shows a similar behaviour over all the studied locations in the IP. The strong linear correlation between El Niño index and yield is remarkable, being this relation non-stationary on time, although the air temperature-yield relationship remains on time, being the highest influences during grain filling period. Regarding atmospheric patterns, the summer Scandinavian pattern has significant influence on yield in IP. The potential usefulness of this study is to apply the relationships found to improving crop forecasting in IP.
Resumo:
The traditional ballast track structures are still being used in high speed railways lines with success, however technical problems or performance features have led to non-ballast track solution in some cases. A considerable maintenance work is needed for ballasted tracks due to the track deterioration. Therefore it is very important to understand the mechanism of track deterioration and to predict the track settlement or track irregularity growth rate in order to reduce track maintenance costs and enable new track structures to be designed. The objective of this work is to develop the most adequate and efficient models for calculation of dynamic traffic load effects on railways track infrastructure, and then evaluate the dynamic effect on the ballast track settlement, using a ballast track settlement prediction model, which consists of the vehicle/track dynamic model previously selected and a track settlement law. The calculations are based on dynamic finite element models with direct time integration, contact between wheel and rail and interaction with railway cars. A initial irregularity profile is used in the prediction model. The track settlement law is considered to be a function of number of loading cycles and the magnitude of the loading, which represents the long-term behavior of ballast settlement. The results obtained include the track irregularity growth and the contact force in the final interaction of numerical simulation
Resumo:
In this paper, we propose a system for authenticating local bee pollen against fraudulent samples using image processing and classification techniques. Our system is based on the colour properties of bee pollen loads and the use of one-class classifiers to reject unknown pollen samples. The latter classification techniques allow us to tackle the major difficulty of the problem, the existence of many possible fraudulent pollen types. Also presented is a multi-classifier model with an ambiguity discovery process to fuse the output of the one-class classifiers. The method is validated by authenticating Spanish bee pollen types, the overall accuracy of the final system of being 94%. Therefore, the system is able to rapidly reject the non-local pollen samples with inexpensive hardware and without the need to send the product to the laboratory.
Resumo:
A reliability analysis method is proposed that starts with the identification of all variables involved. These are divided in three groups: (a) variables fixed by codes, as loads and strength project values, and their corresponding partial safety coefficients, (b) geometric variables defining the dimension of the main elements involved, (c) the cost variables, including the possible damages caused by failure, (d) the random variables as loads, strength, etc., and (e)the variables defining the statistical model, as the family of distribution and its corresponding parameters. Once the variables are known, the II-theorem is used to obtain a minimum equivalent set of non-dimensional variables, which is used to define the limit states. This allows a reduction in the number of variables involved and a better understanding of their coupling effects. Two minimum cost criteria are used for selecting the project dimensions. One is based on a bounded-probability of failure, and the other on a total cost, including the damages of the possible failure. Finally, the method is illustrated by means of an application.
Resumo:
Different methods to reduce the high suction caused by conical vortices have been reported in the literature: vertical parapets, either solids or porous, placed at the roof edges being the most analysed configuration. Another method for alleviating the high suction peaks due to conical vortices is to round the roof edges. Very recently, the use of some non-standard parapet configurations, like cantilever parapets, has been suggested. In this paper, its efficiency to reduce suction loads on curved roofs is experimentally checked by testing the pressure distribution on the curved roof of a low-rise building model in a wind tunnel. Very high suction loads have been measured on this model, the magnitude of these high suction loads being significantly decreased when cantilever...
Resumo:
The aim of this study was the determination of the deforming micromechanisms of needlepunched felts subjected to impact loads. A large experimental campaign has been carried out to analyze the influence of the fiber alignment in the ballistic performance. Ballistic limit curves of predeformed samples were compared. The fiber realignment was experimentally measure by means of 2D X-Ray diffraction. Higher specific absorption was observed for samples with a more isotropic mechanical response. A constitutive physicallybased model was developed within the context of the finite element method, which provided the constitutive response for a mesodomain including micromechanical aspects as fiber alignment, fiber sliding and pull-out. The macroscopic response has been validated with the experimental results, showing a very good agreement. The absorbed energy by the material during the impact was predicted and the fiber realignment evolution was also obtained.
Resumo:
The paper provides a method applicable for the determination of flight loads for maneuvering aircraft, in which aerodynamic loads are calculated based on doublet lattice method, which contains three primary steps. Firstly, non-dimensional stability and control derivative coefficients are obtained through solving unsteady aerodynamics in subsonic flow based on a doublet lattice technical. These stability and control derivative coefficients are used in second step. Secondly, the simulation of aircraft dynamic maneuvers is completed utilizing fourth order Runge-Kutta method to solve motion equations in different maneuvers to gain response parameters of aircraft due to the motion of control surfaces. Finally, the response results calculated in the second step are introduced to the calculation of aerodynamic loads. Thus, total loads and loads distribution on different components of aircraft are obtained. According to the above method, abrupt pitching maneuvers, rolling maneuvers and yawing maneuvers are investigated respectively.