63 resultados para next generation matrix
em Universidad Politécnica de Madrid
Resumo:
This article analyses a number of social and cultural aspects of the blog phenomenon with the methodological aid of a complexity model, the New Techno-social Environment (hereinafter also referred to by its Spanish acronym, NET, or Nuevo Entorno Tecnosocial) together with the socio-technical approach of the two blogologist authors. Both authors are researchers interested in the new reality of the Digital Universal Network (DUN). After a review of some basic definitions, the article moves on to highlight some key characteristics of an emerging blog culture and relates them to the properties of the NET. Then, after a brief practical parenthesis for people entering the blogosphere for the first time, we present some reflections on blogs as an evolution of virtual communities and on the changes experienced by the inhabitants of the infocity emerging from within the NET. The article concludes with a somewhat disturbing question; whether among these changes there might not be a gradual transformation of the structure and form of human intelligence.
Resumo:
Next Generation Networks (NGN) provide Telecommunications operators with the possibility to share their resources and infrastructure, facilitate the interoperability with other networks, and simplify and unify the management, operation and maintenance of service offerings, thus enabling the fast and cost-effective creation of new personal, broadband ubiquitous services. Unfortunately, service creation over NGN is far from the success of service creation in the Web, especially when it comes to Web 2.0. This paper presents a novel approach to service creation and delivery, with a platform that opens to non-technically skilled users the possibility to create, manage and share their own convergent (NGN-based and Web-based) services. To this end, the business approach to user-generated services is analyzed and the technological bases supporting the proposal are explained.
Resumo:
Next generation telecommunications infrastructures are considered as a principal example of a new technology for sustainable economic growth. From their deployment it is expected that a wealth of innovations – hopefully converted into economic growth – new sources of employment and improved quality of life will result. In line with these prospects, public administrations at supranational, national, regional and local levels have encouraged the development of these new infrastructures. Moreover, in times of economic crisis, public assistance to deploy such networks encompasses the promise of placing a weak economy on the road to prosperity. However, such arguments and political claims clearly require rigorous assessment. In particular, any such assessment must adequately address the appropriate form of modelling that best captures key elements for identifiable progress from next generation access networks (NGAN).
Resumo:
ICTs account nowadays for 2% of total carbon emissions. However, in a time when strict measures to reduce energyconsumption in all the industrial and services sectors are required, the ICT sector faces an increase in services and bandwidth demand. The deployment of NextGenerationNetworks (NGN) will be the answer to this new demand and specifically, the NextGenerationAccessNetworks (NGANs) will provide higher bandwidth access to users. Several policy and cost analysis are being carried out to understand the risks and opportunities of new deployments, though the question of which is the role of energyconsumption in NGANs seems off the table. Thus, this paper proposes amodel to analyze the energyconsumption of the main fiber-based NGAN architectures, i.e. Fiber To The House (FTTH) in both Passive Optical Network (PON) and Point-to-Point (PtP) variations, and FTTx/VDSL. The aim of this analysis is to provide deeper insight on the impact of new deployments on the energyconsumption of the ICT sector and the effects of energyconsumption on the life-cycle cost of NGANs. The paper presents also an energyconsumption comparison of the presented architectures, particularized in the specific geographic and demographic distribution of users of Spain, but easily extendable to other countries.
Resumo:
Predictions about electric energy needs, based on current electric energy models, forecast that the global energy consumption on Earth for 2050 will double present rates. Using distributed procedures for control and integration, the expected needs can be halved. Therefore implementation of Smart Grids is necessary. Interaction between final consumers and utilities is a key factor of future Smart Grids. This interaction is aimed to reach efficient and responsible energy consumption. Energy Residential Gateways (ERG) are new in-building devices that will govern the communication between user and utility and will control electric loads. Utilities will offer new services empowering residential customers to lower their electric bill. Some of these services are Smart Metering, Demand Response and Dynamic Pricing. This paper presents a practical development of an ERG for residential buildings.
Resumo:
Next generation access networks (NGAN) will support a renewed electronic communication market where main opportunities lie in the provision of ubiquitous broadband connectivity, applications and content. From their deployment it is expected a wealth of innovations. Within this framework, the project reviews the variety of NGAN deployment options available for rural environments, derives a simple method for approximate cost calculations, and then discusses and compares the results obtained. Data for Spain are used for practical calculations, but the model is applicable with minor modifications to most of the rural areas of European countries. The final part of the paper is devoted to review the techno-economic implications of a network deployment in a rural environment as well as the adequacy and possible developments of the regulatory framework involved
Resumo:
Next generation access networks (NGAN) will support a renewed communication structure where opportunities lie in the provision of ubiquitous broadband connectivity, a wide variety of new applications, appealing contents and a general support to the sustainable growth of diverse sectors. From their deployment it is expected a wealth of innovations, jobs creation and a new wave of economic growth. In this paper we discuss which could be the role of Hybrid Fibre Coax (HFC) in the Next Generation Access Network (NGAN) roadmap. Thus, we propose a simplified model for making approximate cost calculations for HFC deployment based on the geographic and sociodemographic characteristics of Spain. Considering the latest evolution of HFC based on DOCSIS 3.0 from integrated (I-CMTS) towards modular (M-CMTS), the results from the model are compared with the most competitive NGAN for ultrabroadband speeds: Fibre to the Home (FTTH) based on Gigabitcapable Passive Optical Networks (GPON)
Resumo:
Presentación realizada en el PhD Seminar del ITS 2011 en Budapest. ICTs (Information and Communication Technologies) currently account for 2% of total carbon emissions. However, although modern standards require strict measures to reduce energy consumption across all industrial and services sectors, the ICT sector also faces an increase in services and bandwidth demand. The deployment of Next Generation Networks (NGN) will be the answer to this new demand; more specifically, Next Generation Access Networks (NGANs) will provide higher bandwidth access to users. Several policy and cost analyses are being carried out to understand the risks and opportunities of new deployments, but the question of what role energy consumption plays in NGANs seems off the table. Thus, this paper proposes a model to analyse the energy consumption of the main fibre-based NGAN architectures: Fibre To The House (FTTH), in both Passive Optical Network (PON) and Point-to-Point (PtP) variations, and FTTx/VDSL. The aim of this analysis is to provide deeper insight on the impact of new deployments on the energy consumption of the ICT sector and the effects of energy consumption on the life-cycle cost of NGANs. The paper also presents an energy consumption comparison of the presented architectures, particularised to the specific geographic and demographic distribution of users of Spain but easily extendable to other countries.
Resumo:
La contribución del sector de las tecnologías de la información y las comunicaciones (TICs) al consumo de energía a nivel global se ha visto incrementada considerablemente en la última década al mismo tiempo que su relevancia dentro de la economía global. Se prevé que esta tendencia continúe debido al uso cada vez más intensivo de estas tecnologías. Una de las principales causas es el tráfico de datos de banda ancha generado por el uso de las redes de telecomunicaciones. De hecho como respuesta a esta demanda de recursos por parte de los usuarios, de la industria de las telecomunicaciones está iniciando el despliegue de las redes de nueva generación. En cualquier caso, el consumo de energía es un factor generalmente ausente del debate sobre el despliegue de estas tecnologías, a pesar de la posible repercusión que pueda llegar a tener en los costes y la sostenibilidad de estos proyectos. A lo largo de este trabajo se desarrollan modelos para evaluar el consumo energético de las redes de acceso de nueva generación (NGAN). Estos servirán tanto para llevar a cabo cálculos en un escenario global estático, como en cualquiera otro que determine la potencial evolución de la red de acceso a lo largo de su despliegue. Estos modelos combinan tres factores: la penetración prospectiva de cada una de las tecnologías de banda ancha analizadas, el tráfico generado por usuario y su futura evolución, y el perfil de consumo de energía de cada uno de los dispositivos de red desplegados. Tras evaluar los resultados derivados de la aplicación de los modelos en el caso demográfico específico de España, se obtienen conclusiones acerca de las diferencias tecnológicas en cuanto al consumo energético, sus implicaciones económicas, y la sensibilidad de los cálculos atendiendo a posibles modificaciones en los valores de referencia de diferentes parámetros de diseño. Se destaca por tanto el efecto en el consumo energético de los desarrollos tecnológicos, tecno-económicos, y de las decisiones en el ámbito regulatorio. Aunque como se ha dicho, se ha ejemplificado el cálculo para un caso particular, tanto los modelos como las conclusiones extraídas se pueden extrapolar a otros países similares.
Resumo:
The contribution to global energy consumption of the information and communications technology (ICT) sector has increased considerably in the last decade, along with its growing relevance to the overall economy. This trend will continue due to the seemingly ever greater use of these technologies, with broadband data traffic generated by the usage of telecommunication networks as a primary component. In fact, in response to user demand, the telecommunications industry is initiating the deployment of next generation networks (NGNs). However, energy consumption is mostly absent from the debate on these deployments, in spite of the potential impact on both expenses and sustainability. In addition, consumers are unaware of the energy impact of their choices in ultra-broadband services. This paper focuses on forecasting energy consumption in the access part of NGNs by modelling the combined effect of the deployment of two different ultra-broadband technologies (FTTH-GPON and LTE), the evolution of traffic per user, and the energy consumption in each of the networks and user devices. Conclusions are presented on the levels of energy consumption, their cost and the impact of different network design parameters. The effect of technological developments, techno-economic and policy decisions on energy consumption is highlighted. On the consumer side, practical figures and comparisons across technologies are provided. Although the paper focuses on Spain, the analysis can be extended to similar countries.
Resumo:
Ambient Assisted Living (AAL) services are emerging as context-awareness solutions to support elderly people?s autonomy. The context-aware paradigm makes applications more user-adaptive. In this way, context and user models expressed in ontologies are employed by applications to describe user and environment characteristics. The rapid advance of technology allows creating context server to relieve applications of context reasoning techniques. Specifically, the Next Generation Networks (NGN) provides by means of the presence service a framework to manage the current user's state as well as the user's profile information extracted from Internet and mobile context. This paper propose a user modeling ontology for AAL services which can be deployed in a NGN environment with the aim at adapting their functionalities to the elderly's context information and state.
Resumo:
Within the technological framework of Information and Communication Technologies (ICT), consumers are currently requesting multimedia services with simplicity of use, reliability, security and service availability through mobile and fixed access. Network operators are proposing the Next Generation Networks (NGN) to address the challenges of providing both services and network convergence. Apart from these considerations, there is a need to provide social and healthcare assistance services in order to support the progressive aging in the elderly population. In order to achieve this objective, the Ambient Assisted Living (AAL) initiative proposes ICT systems and services to promote autonomy and an independent life among the elderly. This paper describes the design and implementation of a group of services, called “service enablers”, which helps AAL applications to be supported in NGN. The presented enablers are identified to support the teleconsulting applications requirements in an NGN environment, involving the implementation of a virtual waiting room, a virtual whiteboard, a multimedia multiconference and a vital-signs monitoring presence status. A use case is defined and implemented to evaluate the developed enablers' performance.
Resumo:
Lately, the mobile data market has moved into a growth stage triggered by two facts: affordability of mobile broadband, and availability of data-friendly devices. At this stage, market growth is no longer dependent on push strategies from suppliers; on the contrary, demand is now driving the market. However, it will not be easy for mobile operating companies to cope up with the demand to come in the near future. The infrastructure that is needed to support corresponding demand is far from completion. Operators are forced to make heavy investments to upgrade and expand their networks. To decide how to handle the present and upcoming demand, they need to identify and understand the characteristics of the scenarios they face. This is precisely the aim of this article, which provides figures on the consequences for mobile infrastructures of a generalised mobile media uptake. Data from the Spanish mobile deployment case have been used to arrive at practical figures and illustration of results, but the conclusions are easily extended to other countries and regions
Resumo:
Fe–Cr based alloys are the leading structural material candidates in the design of next generation reactors due to their high resistance to swelling and corrosion. Despite these good properties there are others, such as embrittlement, which require a higher level of understanding in order to improve aspects such as safety or lifetime of the reactors. The addition of Cr improves the behavior of the steels under irradiation, but not in a monotonic way. Therefore, understanding the changes in the Fe–Cr based alloys microstructure induced by irradiation and the role played by the alloying element (Cr) is needed in order to predict the response of these materials under the extreme conditions they are going to support. In this work we perform a study of the effect of Cr concentration in a bcc Fe–Cr matrix on formation and binding energies of vacancy clusters up to 5 units. The dependence of the calculated formation and binding energy is investigated with two empirical interatomic potentials specially developed to study radiation damage in Fe–Cr alloys. Results are very similar for both potentials showing an increase of the defect stability with the cluster size and no real dependence on Cr concentration for the binding energy.
Resumo:
Este trabajo esta dedicado al estudio de las estructuras macroscópicas conocidas en la literatura como filamentos o blobs que han sido observadas de manera universal en el borde de todo tipo de dispositivos de fusión por confinamiento magnético. Estos filamentos, celdas convectivas elongadas a lo largo de las líneas de campo que surgen en el plasma fuertemente turbulento que existe en este tipo de dispositivos, parecen dominar el transporte radial de partículas y energía en la región conocida como Scrape-off Layer, en la que las líneas de campo dejan de estar cerradas y el plasma es dirigido hacia la pared sólida que forma la cámara de vacío. Aunque el comportamiento y las leyes de escala de estas estructuras son relativamente bien conocidos, no existe aún una teoría generalmente aceptada acerca del mecanismo físico responsable de su formación, que constituye una de las principales incógnitas de la teoría de transporte del borde en plasmas de fusión y una cuestión de gran importancia práctica en el desarrollo de la siguiente generación de reactores de fusión (incluyendo dispositivos como ITER y DEMO), puesto que la eficiencia del confinamiento y la cantidad de energía depositadas en la pared dependen directamente de las características del transporte en el borde. El trabajo ha sido realizado desde una perspectiva eminentemente experimental, incluyendo la observación y el análisis de este tipo de estructuras en el stellarator tipo heliotrón LHD (un dispositivo de gran tamaño, capaz de generar plasmas de características cercanas a las necesarias en un reactor de fusión) y en el stellarator tipo heliac TJ-II (un dispositivo de medio tamaño, capaz de generar plasmas relativamente más fríos pero con una accesibilidad y disponibilidad de diagnósticos mayor). En particular, en LHD se observó la generación de filamentos durante las descargas realizadas en configuración de alta _ (alta presión cinética frente a magnética) mediante una cámara visible ultrarrápida, se caracterizó su comportamiento y se investigó, mediante el análisis estadístico y la comparación con modelos teóricos, el posible papel de la Criticalidad Autoorganizada en la formación de este tipo de estructuras. En TJ-II se diseñó y construyó una cabeza de sonda capaz de medir simultáneamente las fluctuaciones electrostáticas y electromagnéticas del plasma. Gracias a este nuevo diagnóstico se pudieron realizar experimentos con el fin de determinar la presencia de corriente paralela a través de los filamentos (un parámetro de gran importancia en su modelización) y relacionar los dos tipos de fluctuaciones por primera vez en un stellarator. Así mismo, también por primera vez en este tipo de dispositivo, fue posible realizar mediciones simultáneas de los tensores viscoso y magnético (Reynolds y Maxwell) de transporte de cantidad de movimiento. ABSTRACT This work has been devoted to the study of the macroscopic structures known in the literature as filaments or blobs, which have been observed universally in the edge of all kind of magnetic confinement fusion devices. These filaments, convective cells stretching along the magnetic field lines, arise from the highly turbulent plasma present in this kind of machines and seem to dominate radial transport of particles and energy in the region known as Scrapeoff Layer, in which field lines become open and plasma is directed towards the solid wall of the vacuum vessel. Although the behavior and scale laws of these structures are relatively well known, there is no generally accepted theory about the physical mechanism involved in their formation yet, which remains one of the main unsolved questions in the fusion plasmas edge transport theory and a matter of great practical importance for the development of the next generation of fusion reactors (including ITER and DEMO), since efficiency of confinement and the energy deposition levels on the wall are directly dependent of the characteristics of edge transport. This work has been realized mainly from an experimental perspective, including the observation and analysis of this kind of structures in the heliotron stellarator LHD (a large device capable of generating reactor-relevant plasma conditions) and in the heliac stellarator TJ-II (a medium-sized device, capable of relatively colder plasmas, but with greater ease of access and diagnostics availability). In particular, in LHD, the generation of filaments during high _ discharges (with high kinetic to magnetic pressure ratio) was observed by means of an ultrafast visible camera, and the behavior of this structures was characterized. Finally, the potential role of Self-Organized Criticality in the generation of filaments was investigated. In TJ-II, a probe head capable of measuring simultaneously electrostatic and electromagnetic fluctuations in the plasma was designed and built. Thanks to this new diagnostic, experiments were carried out in order to determine the presence of parallel current through filaments (one of the most important parameters in their modelization) and to related electromagnetic (EM) and electrostatic (ES) fluctuations for the first time in an stellarator. As well, also for the first time in this kind of device, measurements of the viscous and magnetic momentum transfer tensors (Reynolds and Maxwell) were performed.