24 resultados para new cognitive cartography

em Universidad Politécnica de Madrid


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cognitive Wireless Sensor Networks are an emerging technology with a vast potential to avoid traditional wireless problems such as reliability, interferences and spectrum scarcity in Wireless Sensor Networks. Cognitive Wireless Sensor Networks test-beds are an important tool for future developments, protocol strategy testing and algorithm optimization in real scenarios. A new cognitive test-bed for Cognitive Wireless Sensor Networks is presented in this paper. This work in progress includes both the design of a cognitive simulator for networks with a high number of nodes and the implementation of a new platform with three wireless interfaces and a cognitive software for extracting real data. Finally, as a future work, a remote programmable system and the planning for the physical deployment of the nodes at the university building is presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Las redes de sensores inalámbricas son uno de los sectores con más crecimiento dentro de las redes inalámbricas. La rápida adopción de estas redes como solución para muchas nuevas aplicaciones ha llevado a un creciente tráfico en el espectro radioeléctrico. Debido a que las redes inalámbricas de sensores operan en las bandas libres Industrial, Scientific and Medical (ISM) se ha producido una saturación del espectro que en pocos años no permitirá un buen funcionamiento. Con el objetivo de solucionar este tipo de problemas ha aparecido el paradigma de Radio Cognitiva (CR). La introducción de las capacidades cognitivas en las redes inalámbricas de sensores permite utilizar estas redes para aplicaciones con unos requisitos más estrictos respecto a fiabilidad, cobertura o calidad de servicio. Estas redes que aúnan todas estas características son llamadas redes de sensores inalámbricas cognitivas (CWSNs). La mejora en prestaciones de las CWSNs permite su utilización en aplicaciones críticas donde antes no podían ser utilizadas como monitorización de estructuras, de servicios médicos, en entornos militares o de vigilancia. Sin embargo, estas aplicaciones también requieren de otras características que la radio cognitiva no nos ofrece directamente como, por ejemplo, la seguridad. La seguridad en CWSNs es un aspecto poco desarrollado al ser una característica no esencial para su funcionamiento, como pueden serlo el sensado del espectro o la colaboración. Sin embargo, su estudio y mejora es esencial de cara al crecimiento de las CWSNs. Por tanto, esta tesis tiene como objetivo implementar contramedidas usando las nuevas capacidades cognitivas, especialmente en la capa física, teniendo en cuenta las limitaciones con las que cuentan las WSNs. En el ciclo de trabajo de esta tesis se han desarrollado dos estrategias de seguridad contra ataques de especial importancia en redes cognitivas: el ataque de simulación de usuario primario (PUE) y el ataque contra la privacidad eavesdropping. Para mitigar el ataque PUE se ha desarrollado una contramedida basada en la detección de anomalías. Se han implementado dos algoritmos diferentes para detectar este ataque: el algoritmo de Cumulative Sum y el algoritmo de Data Clustering. Una vez comprobado su validez se han comparado entre sí y se han investigado los efectos que pueden afectar al funcionamiento de los mismos. Para combatir el ataque de eavesdropping se ha desarrollado una contramedida basada en la inyección de ruido artificial de manera que el atacante no distinga las señales con información del ruido sin verse afectada la comunicación que nos interesa. También se ha estudiado el impacto que tiene esta contramedida en los recursos de la red. Como resultado paralelo se ha desarrollado un marco de pruebas para CWSNs que consta de un simulador y de una red de nodos cognitivos reales. Estas herramientas han sido esenciales para la implementación y extracción de resultados de la tesis. ABSTRACT Wireless Sensor Networks (WSNs) are one of the fastest growing sectors in wireless networks. The fast introduction of these networks as a solution in many new applications has increased the traffic in the radio spectrum. Due to the operation of WSNs in the free industrial, scientific, and medical (ISM) bands, saturation has ocurred in these frequencies that will make the same operation methods impossible in the future. Cognitive radio (CR) has appeared as a solution for this problem. The networks that join all the mentioned features together are called cognitive wireless sensor networks (CWSNs). The adoption of cognitive features in WSNs allows the use of these networks in applications with higher reliability, coverage, or quality of service requirements. The improvement of the performance of CWSNs allows their use in critical applications where they could not be used before such as structural monitoring, medical care, military scenarios, or security monitoring systems. Nevertheless, these applications also need other features that cognitive radio does not add directly, such as security. The security in CWSNs has not yet been explored fully because it is not necessary field for the main performance of these networks. Instead, other fields like spectrum sensing or collaboration have been explored deeply. However, the study of security in CWSNs is essential for their growth. Therefore, the main objective of this thesis is to study the impact of some cognitive radio attacks in CWSNs and to implement countermeasures using new cognitive capabilities, especially in the physical layer and considering the limitations of WSNs. Inside the work cycle of this thesis, security strategies against two important kinds of attacks in cognitive networks have been developed. These attacks are the primary user emulator (PUE) attack and the eavesdropping attack. A countermeasure against the PUE attack based on anomaly detection has been developed. Two different algorithms have been implemented: the cumulative sum algorithm and the data clustering algorithm. After the verification of these solutions, they have been compared and the side effects that can disturb their performance have been analyzed. The developed approach against the eavesdropping attack is based on the generation of artificial noise to conceal information messages. The impact of this countermeasure on network resources has also been studied. As a parallel result, a new framework for CWSNs has been developed. This includes a simulator and a real network with cognitive nodes. This framework has been crucial for the implementation and extraction of the results presented in this thesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Analysis of minimally invasive surgical videos is a powerful tool to drive new solutions for achieving reproducible training programs, objective and transparent assessment systems and navigation tools to assist surgeons and improve patient safety. This paper presents how video analysis contributes to the development of new cognitive and motor training and assessment programs as well as new paradigms for image-guided surgery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cognitive wireless sensor network (CWSN) is a new paradigm, integrating cognitive features in traditional wireless sensor networks (WSNs) to mitigate important problems such as spectrum occupancy. Security in cognitive wireless sensor networks is an important problem since these kinds of networks manage critical applications and data. The specific constraints of WSN make the problem even more critical, and effective solutions have not yet been implemented. Primary user emulation (PUE) attack is the most studied specific attack deriving from new cognitive features. This work discusses a new approach, based on anomaly behavior detection and collaboration, to detect the primary user emulation attack in CWSN scenarios. Two non-parametric algorithms, suitable for low-resource networks like CWSNs, have been used in this work: the cumulative sum and data clustering algorithms. The comparison is based on some characteristics such as detection delay, learning time, scalability, resources, and scenario dependency. The algorithms have been tested using a cognitive simulator that provides important results in this area. Both algorithms have shown to be valid in order to detect PUE attacks, reaching a detection rate of 99% and less than 1% of false positives using collaboration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cognitive Wireless Sensor Network (CWSN) is a new paradigm which integrates cognitive features in traditional Wireless Sensor Networks (WSNs) to mitigate important problems such as spectrum occupancy. Security in Cognitive Wireless Sensor Networks is an important problem because these kinds of networks manage critical applications and data. Moreover, the specific constraints of WSN make the problem even more critical. However, effective solutions have not been implemented yet. Among the specific attacks derived from new cognitive features, the one most studied is the Primary User Emulation (PUE) attack. This paper discusses a new approach, based on anomaly behavior detection and collaboration, to detect the PUE attack in CWSN scenarios. A nonparametric CUSUM algorithm, suitable for low resource networks like CWSN, has been used in this work. The algorithm has been tested using a cognitive simulator that brings important results in this area. For example, the result shows that the number of collaborative nodes is the most important parameter in order to improve the PUE attack detection rates. If the 20% of the nodes collaborates, the PUE detection reaches the 98% with less than 1% of false positives.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Analysis of minimally invasive surgical videos is a powerful tool to drive new solutions for achieving reproducible training programs, objective and transparent assessment systems and navigation tools to assist surgeons and improve patient safety. This paper presents how video analysis contributes to the development of new cognitive and motor training and assessment programs as well as new paradigms for image-guided surgery.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Acquired Brain Injury (ABI), either caused by vascular or traumatic nature, is one of the most important causes for neurological disabilities. People who suffer ABI see how their quality of life decreases, due to the affection of one or some of the cognitive functions (memory, attention, language or executive functions). The traditional cognitive rehabilitation protocols are too expensive, so every help carried out in this area is justified. PREVIRNEC is a new platform for cognitive tele-rehabilitation that allows the neuropsychologist to schedule rehabilitation sessions consisted of specifically designed tasks, plus offering an additional way of communication between neuropsychologists and patients. Besides, the platform offers a knowledge management module that allows the optimization of the cognitive rehabilitation to this kind of patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hojas Kilométricas (Kilometric Sheets). Specifically, the study focuses on those sheets referring to the city centre and surrounding area of the Royal Site of Aranjuez, a town in the south of the Province of Madrid. The aim of this study is to restore the actual size and measurements of scanned images of the Hojas Kilométricas. This would allow us, among other things, to reestablish both the format and scale of the original plans. To achieve this goal it is necessary to rectify and then georeference these images, i.e. assign them a geographic reference system. This procedure is essential in the overlaying and comparison of the Hojas Kilométricas of the Royal Site with other historical cartography as well as other sources related to the same area from different time periods. Subsequent research would allow us, for example, to reconstruct the time-evolution of the urban area, to spot new construction and to pinpoint the locations of any altered or missing buildings or architectural features. In addition, this would allow us to develop and integrate databases for GIS models applicable to the management of our cultural heritage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuropsychological Rehabilitation is a complex clinic process which tries to restore or compensate cognitive and behavioral disorders in people suffering from a central nervous system injury. Information and Communication Technologies (ICTs) in Biomedical Engineering play an essential role in this field, allowing improvement and expansion of present rehabilitation programs. This paper presents a set of cognitive rehabilitation 2D-Tasks for patients with Acquired Brain Injury (ABI). These tasks allow a high degree of personalization and individualization in therapies, based on the opportunities offered by new technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents a cartographic system to facilitate cooperative manoeuvres among autonomous vehicles in a well-known environment. The main objective is to design an extended cartographic system to help in the navigation of autonomous vehicles. This system has to allow the vehicles not only to access the reference points needed for navigation, but also noticeable information such as the location and type of traffic signals, the proximity to a crossing, the streets en route, etc. To do this, a hierarchical representation of the information has been chosen, where the information has been stored in two levels. The lower level contains the archives with the Universal Traverse Mercator (UTM) coordinates of the points that define the reference segments to follow. The upper level contains a directed graph with the relational database in which streets, crossings, roundabouts and other points of interest are represented. Using this new system it is possible to know when the vehicle approaches a crossing, what other paths arrive at that crossing, and, should there be other vehicles circulating on those paths and arriving at the crossing, which one has the highest priority. The data obtained from the cartographic system is used by the autonomous vehicles for cooperative manoeuvres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Descripción y evaluación de sistema de estimulación cognitiva a través de la TDT orientada a personas con enfermedad de Parkinson, con supervisión por parte de sus terapeutas de forma remota. Abstract: This paper details the full design, implementation, and validation of an e-health service in order to improve the community health care services for patients with cognitive disorders. Specifically, the new service allows Parkinson’s disease patients benefit from the possibility of doing cognitive stimulation therapy (CST) at home by using a familiar device such as a TV set. Its use instead of a PC could be a major advantage for some patients whose lack of familiarity with the use of a PC means that they can do therapy only in the presence of a therapist. For these patients this solution could bring about a great improvement in their autonomy. At the same time, this service provides therapists with the ability to conduct follow-up of therapy sessions via the web,benefiting from greater and easier control of the therapy exercises performed by patients and allowing them to customize new exercises in accordance with the particular needs of each patient. As a result, this kind of CST is considered to be a complement of other therapies oriented to the Parkinson patients. Furthermore, with small changes, the system could be useful for patients with a different cognitive disease such as Alzheimer’s or mild cognitive impairment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acquired brain injury (ABI) is one of the leading causes of death and disability in the world and is associated with high health care costs as a result of the acute treatment and long term rehabilitation involved. Different algorithms and methods have been proposed to predict the effectiveness of rehabilitation programs. In general, research has focused on predicting the overall improvement of patients with ABI. The purpose of this study is the novel application of data mining (DM) techniques to predict the outcomes of cognitive rehabilitation in patients with ABI. We generate three predictive models that allow us to obtain new knowledge to evaluate and improve the effectiveness of the cognitive rehabilitation process. Decision tree (DT), multilayer perceptron (MLP) and general regression neural network (GRNN) have been used to construct the prediction models. 10-fold cross validation was carried out in order to test the algorithms, using the Institut Guttmann Neurorehabilitation Hospital (IG) patients database. Performance of the models was tested through specificity, sensitivity and accuracy analysis and confusion matrix analysis. The experimental results obtained by DT are clearly superior with a prediction average accuracy of 90.38%, while MLP and GRRN obtained a 78.7% and 75.96%, respectively. This study allows to increase the knowledge about the contributing factors of an ABI patient recovery and to estimate treatment efficacy in individual patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alzheimer's disease (AD) is the most common cause of dementia. Over the last few years, a considerable effort has been devoted to exploring new biomarkers. Nevertheless, a better understanding of brain dynamics is still required to optimize therapeutic strategies. In this regard, the characterization of mild cognitive impairment (MCI) is crucial, due to the high conversion rate from MCI to AD. However, only a few studies have focused on the analysis of magnetoencephalographic (MEG) rhythms to characterize AD and MCI. In this study, we assess the ability of several parameters derived from information theory to describe spontaneous MEG activity from 36 AD patients, 18 MCI subjects and 26 controls. Three entropies (Shannon, Tsallis and Rényi entropies), one disequilibrium measure (based on Euclidean distance ED) and three statistical complexities (based on Lopez Ruiz–Mancini–Calbet complexity LMC) were used to estimate the irregularity and statistical complexity of MEG activity. Statistically significant differences between AD patients and controls were obtained with all parameters (p < 0.01). In addition, statistically significant differences between MCI subjects and controls were achieved by ED and LMC (p < 0.05). In order to assess the diagnostic ability of the parameters, a linear discriminant analysis with a leave-one-out cross-validation procedure was applied. The accuracies reached 83.9% and 65.9% to discriminate AD and MCI subjects from controls, respectively. Our findings suggest that MCI subjects exhibit an intermediate pattern of abnormalities between normal aging and AD. Furthermore, the proposed parameters provide a new description of brain dynamics in AD and MCI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective The main purpose of this research is the novel use of artificial metaplasticity on multilayer perceptron (AMMLP) as a data mining tool for prediction the outcome of patients with acquired brain injury (ABI) after cognitive rehabilitation. The final goal aims at increasing knowledge in the field of rehabilitation theory based on cognitive affectation. Methods and materials The data set used in this study contains records belonging to 123 ABI patients with moderate to severe cognitive affectation (according to Glasgow Coma Scale) that underwent rehabilitation at Institut Guttmann Neurorehabilitation Hospital (IG) using the tele-rehabilitation platform PREVIRNEC©. The variables included in the analysis comprise the neuropsychological initial evaluation of the patient (cognitive affectation profile), the results of the rehabilitation tasks performed by the patient in PREVIRNEC© and the outcome of the patient after a 3–5 months treatment. To achieve the treatment outcome prediction, we apply and compare three different data mining techniques: the AMMLP model, a backpropagation neural network (BPNN) and a C4.5 decision tree. Results The prediction performance of the models was measured by ten-fold cross validation and several architectures were tested. The results obtained by the AMMLP model are clearly superior, with an average predictive performance of 91.56%. BPNN and C4.5 models have a prediction average accuracy of 80.18% and 89.91% respectively. The best single AMMLP model provided a specificity of 92.38%, a sensitivity of 91.76% and a prediction accuracy of 92.07%. Conclusions The proposed prediction model presented in this study allows to increase the knowledge about the contributing factors of an ABI patient recovery and to estimate treatment efficacy in individual patients. The ability to predict treatment outcomes may provide new insights toward improving effectiveness and creating personalized therapeutic interventions based on clinical evidence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cognitive impairment is the main cause of disability in developed societies. New interactive technologies help therapists in neurorehabilitation in order to increase patients’ autonomy and quality of life. This work proposes Interactive Video (IV) as a technology to develop cognitive rehabilitation tasks based on Activities of Daily Living (ADL). ADL cognitive task has been developed and integrated with eye-tracking technology for task interaction and patients’ performance monitoring.