9 resultados para network simulation

em Universidad Politécnica de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a simulation tool for assisting the deployment of wireless sensor network is introduced and simulation results are verified under a specific indoor environment. The simulation tool supports two modes: deterministic mode and stochastic mode. The deterministic mode is environment dependent in which the information of environment should be provided beforehand. Ray tracing method and deterministic propagation model are employed in order to increase the accuracy of the estimated coverage, connectivity and routing; the stochastic mode is useful for large scale random deployment without previous knowledge on geographic information. Dynamic Source Routing protocol (DSR) and Ad hoc On-Demand Distance Vector Routing protocol (AODV) are implemented in order to calculate the topology of WSN. Hence this tool gives direct view on the performance of WSN and assists users in finding the potential problems of wireless sensor network before real deployment. At the end, a case study is realized in Centro de Electronica Industrial (CEI), the simulation results on coverage, connectivity and routing are verified by the measurement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In overhead conductor rail lines, aluminium beams are usually mounted with support spacing between 8 and 12 meters, to limit the maximum vertical deflection in the center of the span. This small support spacing limits the use of overhead conductor rail to tunnels, therefore it has been used almost exclusively in metropolitan networks, with operation speeds below 110 km/h. Nevertheless, due to the lower cost of maintenance required for this electrification system, some railway administrations are beginning to install it in some tunnels on long-distance lines, requesting higher operation speeds [1]. Some examples are the Barcelona and Madrid suburban networks (Spain), and recent lines in Turkey and Malaysia. In order to adapt the design of the overhead conductor for higher speeds (V > 160 km/h), particular attention must be paid to the geometry of the conductor rail in critical zones as overlaps, crossings and, especially, transitions between conductor rail and conventional catenary, since the use of overhead conductor rail is limited to tunnels, as already mentioned. This paper describes simulation techniques developed in order to take into account these critical zones. Furthermore, some specific simulations results are presented that have been used to analyze and optimizes the geometry of this special zones to get a better current collection quality, in a real suburban network. This paper presents the work undertaken by the Railways Technology Research Centre (CITEF), having over 10 years of experience in railways research [1-4].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Massive integration of renewable energy sources in electrical power systems of remote islands is a subject of current interest. The increasing cost of fossil fuels, transport costs to isolated sites and environmental concerns constitute a serious drawback to the use of conventional fossil fuel plants. In a weak electrical grid, as it is typical on an island, if a large amount of conventional generation is substituted by renewable energy sources, power system safety and stability can be compromised, in the case of large grid disturbances. In this work, a model for transient stability analysis of an isolated electrical grid exclusively fed from a combination of renewable energy sources has been studied. This new generation model will be installed in El Hierro Island, in Spain. Additionally, an operation strategy to coordinate the generation units (wind, hydro) is also established. Attention is given to the assessment of inertial energy and reactive current to guarantee power system stability against large disturbances. The effectiveness of the proposed strategy is shown by means of simulation results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A connectivity function defined by the 3D-Euler number, is a topological indicator and can be related to hydraulic properties (Vogel and Roth, 2001). This study aims to develop connectivity Euler indexes as indicators of the ability of soils for fluid percolation. The starting point was a 3D grey image acquired by X-ray computed tomography of a soil at bulk density of 1.2 mg cm-3. This image was used in the simulation of 40000 particles following a directed random walk algorithms with 7 binarization thresholds. These data consisted of 7 files containing the simulated end points of the 40000 random walks, obtained in Ruiz-Ramos et al. (2010). MATLAB software was used for computing the frequency matrix of the number of particles arriving at every end point of the random walks and their 3D representation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to present a simulation‐based evaluation method for the comparison of different organizational forms and software support levels in the field of supply chain management (SCM). Design/methodology/approach – Apart from widely known logistic performance indicators, the discrete event simulation model considers explicitly coordination cost as stemming from iterative administration procedures. Findings - The method is applied to an exemplary supply chain configuration considering various parameter settings. Curiously, additional coordination cost does not always result in improved logistic performance. Influence factor variations lead to different organizational recommendations. The results confirm the high importance of (up to now) disregarded dimensions when evaluating SCM concepts and IT tools. Research limitations/implications – The model is based on simplified product and network structures. Future research shall include more complex, real world configurations. Practical implications – The developed method is designed for the identification of improvement potential when SCM software is employed. Coordination schemes based only on ERP systems are valid alternatives in industrial practice because significant investment IT can be avoided. Therefore, the evaluation of these coordination procedures, in particular the cost due to iterations, is of high managerial interest and the method provides a comprehensive tool for strategic IT decision making. Originality/value – Reviewed literature is mostly focused on the benefits of SCM software implementations. However, ERP system based supply chain coordination is still widespread industrial practice but associated coordination cost has not been addressed by researchers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, function of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells has only very recently been proposed (Jerusalem et al., 2013). In this paper, we present the implementation details of Neurite: the finite difference parallel program used in this reference. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite-explicit and implicit-were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between lectrophysiology and mechanics (Jerusalem et al., 2013). This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon, a segmented dendritic tree, and a damaged axon. The capabilities of the program to deal with large scale scenarios, segmented neuronal structures, and functional deficits under mechanical loading are specifically highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Una Red de Procesadores Evolutivos o NEP (por sus siglas en ingles), es un modelo computacional inspirado por el modelo evolutivo de las celulas, específicamente por las reglas de multiplicación de las mismas. Esta inspiración hace que el modelo sea una abstracción sintactica de la manipulation de information de las celulas. En particu¬lar, una NEP define una maquina de cómputo teorica capaz de resolver problemas NP completos de manera eficiente en tóerminos de tiempo. En la praóctica, se espera que las NEP simuladas en móaquinas computacionales convencionales puedan resolver prob¬lemas reales complejos (que requieran ser altamente escalables) a cambio de una alta complejidad espacial. En el modelo NEP, las cóelulas estóan representadas por palabras que codifican sus secuencias de ADN. Informalmente, en cualquier momento de cómputo del sistema, su estado evolutivo se describe como un coleccion de palabras, donde cada una de ellas representa una celula. Estos momentos fijos de evolucion se denominan configuraciones. De manera similar al modelo biologico, las palabras (celulas) mutan y se dividen en base a bio-operaciones sencillas, pero solo aquellas palabras aptas (como ocurre de forma parecida en proceso de selection natural) seran conservadas para la siguiente configuracióon. Una NEP como herramienta de computation, define una arquitectura paralela y distribuida de procesamiento simbolico, en otras palabras, una red de procesadores de lenguajes. Desde el momento en que el modelo fue propuesto a la comunidad científica en el año 2001, múltiples variantes se han desarrollado y sus propiedades respecto a la completitud computacional, eficiencia y universalidad han sido ampliamente estudiadas y demostradas. En la actualidad, por tanto, podemos considerar que el modelo teórico NEP se encuentra en el estadio de la madurez. La motivación principal de este Proyecto de Fin de Grado, es proponer una aproxi-mación práctica que permita dar un salto del modelo teórico NEP a una implantación real que permita su ejecucion en plataformas computacionales de alto rendimiento, con el fin de solucionar problemas complejos que demanda la sociedad actual. Hasta el momento, las herramientas desarrolladas para la simulation del modelo NEP, si bien correctas y con resultados satisfactorios, normalmente estón atadas a su entorno de ejecucion, ya sea el uso de hardware específico o implementaciones particulares de un problema. En este contexto, el propósito fundamental de este trabajo es el desarrollo de Nepfix, una herramienta generica y extensible para la ejecucion de cualquier algo¬ritmo de un modelo NEP (o alguna de sus variantes), ya sea de forma local, como una aplicación tradicional, o distribuida utilizando los servicios de la nube. Nepfix es una aplicacion software desarrollada durante 7 meses y que actualmente se encuentra en su segunda iteration, una vez abandonada la fase de prototipo. Nepfix ha sido disenada como una aplicacion modular escrita en Java 8 y autocontenida, es decir, no requiere de un entorno de ejecucion específico (cualquier maquina virtual de Java es un contenedor vólido). Nepfix contiene dos componentes o móodulos. El primer móodulo corresponde a la ejecución de una NEP y es por lo tanto, el simulador. Para su desarrollo, se ha tenido en cuenta el estado actual del modelo, es decir, las definiciones de los procesadores y filtros mas comunes que conforman la familia del modelo NEP. Adicionalmente, este componente ofrece flexibilidad en la ejecucion, pudiendo ampliar las capacidades del simulador sin modificar Nepfix, usando para ello un lenguaje de scripting. Dentro del desarrollo de este componente, tambióen se ha definido un estóandar de representacióon del modelo NEP basado en el formato JSON y se propone una forma de representation y codificación de las palabras, necesaria para la comunicación entre servidores. Adicional-mente, una característica importante de este componente, es que se puede considerar una aplicacion aislada y por tanto, la estrategia de distribution y ejecución son total-mente independientes. El segundo moódulo, corresponde a la distribucióon de Nepfix en la nube. Este de-sarrollo es el resultado de un proceso de i+D, que tiene una componente científica considerable. Vale la pena resaltar el desarrollo de este modulo no solo por los resul-tados prócticos esperados, sino por el proceso de investigation que se se debe abordar con esta nueva perspectiva para la ejecución de sistemas de computación natural. La principal característica de las aplicaciones que se ejecutan en la nube es que son gestionadas por la plataforma y normalmente se encapsulan en un contenedor. En el caso de Nepfix, este contenedor es una aplicacion Spring que utiliza el protocolo HTTP o AMQP para comunicarse con el resto de instancias. Como valor añadido, Nepfix aborda dos perspectivas de implementation distintas (que han sido desarrolladas en dos iteraciones diferentes) del modelo de distribution y ejecucion, que tienen un impacto muy significativo en las capacidades y restricciones del simulador. En concreto, la primera iteration utiliza un modelo de ejecucion asincrono. En esta perspectiva asincrona, los componentes de la red NEP (procesadores y filtros) son considerados como elementos reactivos a la necesidad de procesar una palabra. Esta implementation es una optimization de una topologia comun en el modelo NEP que permite utilizar herramientas de la nube para lograr un escalado transparente (en lo ref¬erente al balance de carga entre procesadores) pero produce efectos no deseados como indeterminacion en el orden de los resultados o imposibilidad de distribuir eficiente-mente redes fuertemente interconectadas. Por otro lado, la segunda iteration corresponde al modelo de ejecucion sincrono. Los elementos de una red NEP siguen un ciclo inicio-computo-sincronizacion hasta que el problema se ha resuelto. Esta perspectiva sincrona representa fielmente al modelo teórico NEP pero el proceso de sincronizacion es costoso y requiere de infraestructura adicional. En concreto, se requiere un servidor de colas de mensajes RabbitMQ. Sin embargo, en esta perspectiva los beneficios para problemas suficientemente grandes superan a los inconvenientes, ya que la distribuciín es inmediata (no hay restricciones), aunque el proceso de escalado no es trivial. En definitiva, el concepto de Nepfix como marco computacional se puede considerar satisfactorio: la tecnología es viable y los primeros resultados confirman que las carac-terísticas que se buscaban originalmente se han conseguido. Muchos frentes quedan abiertos para futuras investigaciones. En este documento se proponen algunas aproxi-maciones a la solucion de los problemas identificados como la recuperacion de errores y la division dinamica de una NEP en diferentes subdominios. Por otra parte, otros prob-lemas, lejos del alcance de este proyecto, quedan abiertos a un futuro desarrollo como por ejemplo, la estandarización de la representación de las palabras y optimizaciones en la ejecucion del modelo síncrono. Finalmente, algunos resultados preliminares de este Proyecto de Fin de Grado han sido presentados recientemente en formato de artículo científico en la "International Work-Conference on Artificial Neural Networks (IWANN)-2015" y publicados en "Ad-vances in Computational Intelligence" volumen 9094 de "Lecture Notes in Computer Science" de Springer International Publishing. Lo anterior, es una confirmation de que este trabajo mas que un Proyecto de Fin de Grado, es solo el inicio de un trabajo que puede tener mayor repercusion en la comunidad científica. Abstract Network of Evolutionary Processors -NEP is a computational model inspired by the evolution of cell populations, which might model some properties of evolving cell communities at the syntactical level. NEP defines theoretical computing devices able to solve NP complete problems in an efficient manner. In this model, cells are represented by words which encode their DNA sequences. Informally, at any moment of time, the evolutionary system is described by a collection of words, where each word represents one cell. Cells belong to species and their community evolves according to mutations and division which are defined by operations on words. Only those cells are accepted as surviving (correct) ones which are represented by a word in a given set of words, called the genotype space of the species. This feature is analogous with the natural process of evolution. Formally, NEP is based on an architecture for parallel and distributed processing, in other words, a network of language processors. Since the date when NEP was pro¬posed, several extensions and variants have appeared engendering a new set of models named Networks of Bio-inspired Processors (NBP). During this time, several works have proved the computational power of NBP. Specifically, their efficiency, universality, and computational completeness have been thoroughly investigated. Therefore, we can say that the NEP model has reached its maturity. The main motivation for this End of Grade project (EOG project in short) is to propose a practical approximation that allows to close the gap between theoretical NEP model and a practical implementation in high performing computational platforms in order to solve some of high the high complexity problems society requires today. Up until now tools developed to simulate NEPs, while correct and successful, are usu¬ally tightly coupled to the execution environment, using specific software frameworks (Hadoop) or direct hardware usage (GPUs). Within this context the main purpose of this work is the development of Nepfix, a generic and extensible tool that aims to execute algorithms based on NEP model and compatible variants in a local way, similar to a traditional application or in a distributed cloud environment. Nepfix as an application was developed during a 7 month cycle and is undergoing its second iteration once the prototype period was abandoned. Nepfix is designed as a modular self-contained application written in Java 8, that is, no additional external dependencies are required and it does not rely on an specific execution environment, any JVM is a valid container. Nepfix is made of two components or modules. The first module corresponds to the NEP execution and therefore simulation. During the development the current state of the theoretical model was used as a reference including most common filters and processors. Additionally extensibility is provided by the use of Python as a scripting language to run custom logic. Along with the simulation a definition language for NEP has been defined based on JSON as well as a mechanisms to represent words and their possible manipulations. NEP simulator is isolated from distribution and as mentioned before different applications that include it as a dependency are possible, the distribution of NEPs is an example of this. The second module corresponds to executing Nepfix in the cloud. The development carried a heavy R&D process since this front was not explored by other research groups until now. It's important to point out that the development of this module is not focused on results at this point in time, instead we focus on feasibility and discovery of this new perspective to execute natural computing systems and NEPs specifically. The main properties of cloud applications is that they are managed by the platform and are encapsulated in a container. For Nepfix a Spring application becomes the container and the HTTP or AMQP protocols are used for communication with the rest of the instances. Different execution perspectives were studied, namely asynchronous and synchronous models were developed for solving different kind of problems using NEPs. Different limitations and restrictions manifest in both models and are explored in detail in the respective chapters. In conclusion we can consider that Nepfix as a computational framework is suc-cessful: Cloud technology is ready for the challenge and the first results reassure that the properties Nepfix project pursued were met. Many investigation branches are left open for future investigations. In this EOG implementation guidelines are proposed for some of them like error recovery or dynamic NEP splitting. On the other hand other interesting problems that were not in the scope of this project were identified during development like word representation standardization or NEP model optimizations. As a confirmation that the results of this work can be useful to the scientific com-munity a preliminary version of this project was published in The International Work- Conference on Artificial Neural Networks (IWANN) in May 2015. Development has not stopped since that point and while Nepfix in it's current state can not be consid¬ered a final product the most relevant ideas, possible problems and solutions that were produced during the seven months development cycle are worthy to be gathered and presented giving a meaning to this EOG work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Until a few years ago, most of the network communications were based in the wire as the physical media, but due to the advances and the maturity of the wireless communications, this is changing. Nowadays wireless communications offers fast, secure, efficient and reliable connections. Mobile communications are in expansion, clearly driven by the use of smart phones and other mobile devices, the use of laptops, etc… Besides that point, the inversion in the installation and maintenance of the physical medium is much lower than in wired communications, not only because the air has no cost, but because the installation and maintenance of the wire require a high economic cost. Besides the economic cost we find that wire is a more vulnerable medium to external threats such as noise, sabotages, etc… There are two different types of wireless networks: those which the structure is part of the network itself and those which have a lack of structure or any centralization, in a way that the devices that form part of the network can connect themselves in a dynamic and random way, handling also the routing of every control and information messages, this kind of networks is known as Ad-hoc. In the present work we will proceed to study one of the multiple wireless protocols that allows mobile communications, it is Optimized Link State Routing, from now on, OLSR, it is an pro-active routing, standard mechanism that works in a distributed in order to stablish the connections among the different nodes that belong to a wireless network. Thanks to this protocol it is possible to get all the routing tables in all the devices correctly updated every moment through the periodical transmission of control messages and on this way allow a complete connectivity among the devices that are part of the network and also, allow access to other external networks such as virtual private networks o Internet. This protocol could be perfectly used in environments such as airports, malls, etc… The update of the routing tables in all the devices is got thanks to the periodical transmission of control messages and finally it will offer connectivity among all the devices and the corresponding external networks. For the study of OLSR protocol we will have the help of the network simulator “Network Simulator 2”, a freeware network simulator programmed in C++ based in discrete events. This simulator is used mainly in educational and research environments and allows a very extensive range of protocols, both, wired networks protocols and wireless network protocols, what is going to be really useful to proceed to the simulation of different configurations of networks and protocols. In the present work we will also study different simulations with Network Simulator 2, in different scenarios with different configurations, wired networks, and Ad-hoc networks, where we will study OLSR Protocol. RESUMEN. Hasta hace pocos años, la mayoría de las comunicaciones de red estaban basadas en el cable como medio físico pero debido al avance y madurez alcanzados en el campo de las comunicaciones inalámbricas esto está cambiando. Hoy día las comunicaciones inalámbricas nos ofrecen conexiones veloces, seguras, eficientes y fiables. Las comunicaciones móviles se encuentran en su momento de máxima expansión, claramente impulsadas por el uso de teléfonos y demás dispositivos móviles, el uso de portátiles, etc… Además la inversión a realizar en la instalación y el mantenimiento del medio físico en las comunicaciones móviles es muchísimo menor que en comunicaciones por cable, ya no sólo porque el aire no tenga coste alguno, sino porque la instalación y mantenimiento del cable precisan de un elevado coste económico por norma. Además del coste económico nos encontramos con que es un medio más vulnerable a amenazas externas tales como el ruido, escuchas no autorizadas, sabotajes, etc… Existen dos tipos de redes inalámbricas: las constituidas por una infraestructura que forma parte más o menos de la misma y las que carecen de estructura o centralización alguna, de modo que los dispositivos que forman parte de ella pueden conectarse de manera dinámica y arbitraria entre ellos, encargándose además del encaminamiento de todos los mensajes de control e información, a este tipo de redes se las conoce como redes Ad-hoc. En el presente Proyecto de Fin de Carrera se procederá al estudio de uno de los múltiples protocolos inalámbricos que permiten comunicaciones móviles, se trata del protocolo inalámbrico Optimized Link State Routing, de ahora en adelante OLSR, un mecanismo estándar de enrutamiento pro-activo, que trabaja de manera distribuida para establecer las conexiones entre los nodos que formen parte de las redes inalámbricas Ad-hoc, las cuales carecen de un nodo central y de una infraestructura pre-existente. Gracias a este protocolo es posible conseguir que todos los equipos mantengan en todo momento las tablas de ruta actualizadas correctamente mediante la transmisión periódica de mensajes de control y así permitir una completa conectividad entre todos los equipos que formen parte de la red y, a su vez, también permitir el acceso a otras redes externas tales como redes privadas virtuales o Internet. Este protocolo sería usado en entornos tales como aeropuertos La actualización de las tablas de enrutamiento de todos los equipos se conseguirá mediante la transmisión periódica de mensajes de control y así finalmente se podrá permitir conectividad entre todos los equipos y con las correspondientes redes externas. Para el estudio del protocolo OLSR contaremos con el simulador de redes Network Simulator 2, un simulador de redes freeware programado en C++ basado en eventos discretos. Este simulador es usado principalmente en ambientes educativos y de investigación y permite la simulación tanto de protocolos unicast como multicast. El campo donde más se utiliza es precisamente en el de la investigación de redes móviles Ad-hoc. El simulador Network Simulator 2 no sólo implementa el protocolo OLSR, sino que éste implementa una amplia gama de protocolos, tanto de redes cableadas como de redes inalámbricas, lo cual va a sernos de gran utilidad para proceder a la simulación de distintas configuraciones de redes y protocolos. En el presente Proyecto de Fin de Carrera se estudiarán también diversas simulaciones con el simulador NS2 en diferentes escenarios con diversas configuraciones; redes cableadas, redes inalámbricas Ad-hoc, donde se estudiará el protocolo antes mencionado: OLSR. Este Proyecto de Fin de Carrera consta de cuatro apartados distintos: Primeramente se realizará el estudio completo del protocolo OLSR, se verán los beneficios y contrapartidas que ofrece este protocolo inalámbrico. También se verán los distintos tipos de mensajes existentes en este protocolo y unos pequeños ejemplos del funcionamiento del protocolo OLSR. Seguidamente se hará una pequeña introducción al simulador de redes Network Simulator 2, veremos la historia de este simulador, y también se hará referencia a la herramienta extra NAM, la cual nos permitirá visualizar el intercambio de paquetes que se produce entre los diferentes dispositivos de nuestras simulaciones de forma intuitiva y amigable. Se hará mención a la plataforma MASIMUM, encargada de facilitar en un entorno académico software y documentación a sus alumnos con el fin de facilitarles la investigación y la simulación de redes y sensores Ad-hoc. Finalmente se verán dos ejemplos, uno en el que se realizará una simulación entre dos PCs en un entorno Ethernet y otro ejemplo en el que se realizará una simulación inalámbrica entre cinco dispositivos móviles mediante el protocolo a estudiar, OLSR.