17 resultados para multiply-charged ions of argon

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Stark full widths at half of the maximal line intensity (FWHM, ω) have been measured for 25 spectrallines of PbIII (15 measured for the first time) arising from the 5d106s8s, 5d106s7p, 5d106s5f and 5d106s5g electronic configurations, in a lead plasma produced by ablation with a Nd:YAG laser. The optical emission spectroscopy from a laser-induced plasma generated by a 10 640 Å radiation, with an irradiance of 2 × 1010 W cm− 2 on a lead target (99.99% purity) in an atmosphere of argon was analysed in the wavelength interval between 2000 and 7000 Å. The broadening parameters were obtained with the target placed in argon atmosphere at 6 Torr and 400 ns after each laser light pulse, which provides appropriate measurement conditions. A Boltzmann plot was used to obtain the plasma temperature (21,400 K) and published values of the Starkwidths in Pb I, Pb II and PbIII to obtain the electron number density (7 × 1016 cm− 3); with these values, the plasma composition was determined by means of the Saha equation. Local Thermodynamic Equilibrium (LTE) conditions and plasma homogeneity has been checked. Special attention was dedicated to the possible self-absorption of the different transitions. Comparison of the new results with recent available data is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An efficient approach for the simulation of ion scattering from solids is proposed. For every encountered atom, we take multiple samples of its thermal displacements among those which result in scattering with high probability to finally reach the detector. As a result, the detector is illuminated by intensive “showers,” where each event of detection must be weighted according to the actual probability of the atom displacement. The computational cost of such simulation is orders of magnitude lower than in the direct approach, and a comprehensive analysis of multiple and plural scattering effects becomes possible. We use this method for two purposes. First, the accuracy of the approximate approaches, developed mainly for ion-beam structural analysis, is verified. Second, the possibility to reproduce a wide class of experimental conditions is used to analyze some basic features of ion-solid collisions: the role of double violent collisions in low-energy ion scattering; the origin of the “surface peak” in scattering from amorphous samples; the low-energy tail in the energy spectra of scattered medium-energy ions due to plural scattering; and the degradation of blocking patterns in two-dimensional angular distributions with increasing depth of scattering. As an example of simulation for ions of MeV energies, we verify the time reversibility for channeling and blocking of 1-MeV protons in a W crystal. The possibilities of analysis that our approach offers may be very useful for various applications, in particular, for structural analysis with atomic resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se ha estudiado la determinación de especies de arsénico y de contenidos totales de arsénico y metales pesados, específicamente cadmio, cromo, cobre, níquel, plomo y cinc, en muestras de interés medioambiental por su elevada capacidad acumuladora de metales, concretamente algas marinas comestibles y plantas terrestres procedentes de suelos contaminados por la actividad minera. La determinación de contenidos totales se ha llevado a cabo mediante espectrometría de emisión atómica con plasma de acoplamiento inductivo (ICP‐AES), así como por espectrometría de fluorescencia atómica con generación de hidruros (HG‐AFS), para bajos contenidos de arsénico. Las muestras fueron mineralizadas en medio ácido y calentamiento en horno de microondas. Los métodos fueron validados a través de su aplicación a materiales de referencia de matriz similar a la de las muestras, certificados en contenidos totales de los elementos seleccionados. Los resultados obtenidos mostraron su elevada capacidad de bioabsorción, especialmente en relación a los elevados contenidos de arsénico encontrados en algunas especies de algas pardas (Phaeophytas). En las plantas, se calcularon los factores de translocación, acumulación y biodisponibilidad de los elementos estudiados, permitiendo identificar a la especie Corrigiola telephiifolia como posible acumuladora de plomo e hiperacumuladora de arsénico. La determinación de especies de arsénico hidrosolubles en las muestras objeto de estudio, se llevó a cabo por cromatografía líquida de alta eficacia (HPLC) acoplado a ICP‐AES, HG‐ICP‐AES y HG‐AFS, incluyendo una etapa previa de foto‐oxidación. Los métodos desarrollados, mediante intercambio aniónico y catiónico, permitieron la diferenciación de hasta once especies de arsénico. Para el análisis de las muestras, fue necesaria la optimización de métodos de extracción, seleccionándose la extracción asistida por microondas (MAE) con agua desionizada. Asimismo, se realizaron estudios de estabilidad de arsénico total y de las especies hidrosolubles presentes en las algas, tanto sobre la muestra sólida como en sus extractos acuosos, evaluando las condiciones de almacenamiento adecuadas. En el caso de las plantas, la aplicación del diseño factorial de experimentos permitió optimizar el método de extracción y diferenciar entre las especies de arsénico presentes en forma de iones sencillos de mayor movilidad y el arsénico más fuertemente enlazado a componentes estructurales. Los resultados obtenidos permitieron identificar la presencia de arseniato (As(V)) y arsenito (As(III)) en las plantas, así como de ácido monometilarsónico (MMA) y óxido de trimetilarsina (TMAO) en algunas especies. En la mayoría de las algas se encontraron especies tóxicas, tanto mayoritarias (arseniato) como minoritarias (ácido dimetilarsínico (DMA)), así como hasta cuatro arsenoazúcares. Los resultados obtenidos y su estudio a través de la legislación vigente, mostraron la necesidad de desarrollar una reglamentación específica para el control de este tipo de alimentos. La determinación de especies de arsénico liposolubles en las muestras de algas se llevó a cabo mediante HPLC, en modo fase inversa, acoplado a espectrometría de masas con plasma de acoplamiento inductivo (ICP‐MS) y con ionización por electrospray (ESI‐MS), permitiendo la elucidación estructural de estos compuestos a través de la determinación de sus masas moleculares. Para ello, fue necesaria la puesta a punto de métodos extracción y purificación de los extractos. La metodología desarrollada permitió identificar hasta catorce especies de arsénico liposolubles en las algas, tres de ellas correspondientes a hidrocarburos que contienen arsénico, y once a arsenofosfolípidos, además de dos especies desconocidas. Las masas moleculares de las especies identificadas fueron confirmadas mediante cromatografía de gases acoplada a espectrometría de masas (GC‐MS) y espectrometría de masas de alta resolución (HR‐MS). ABSTRACT The determination of arsenic species and total arsenic and heavy metal contents (cadmium, chromium, cooper, nickel, lead and zinc) in environmental samples, with high metal accumulator capacity, has been studied. The samples studied were edible marine algae and terrestrial plants from soils polluted by mining activities. The determination of total element contents was performed by inductively coupled plasma atomic emission spectrometry (ICP‐AES), as well as by hydride generation atomic fluorescence spectrometry (HG‐AFS) for low arsenic contents. The samples studied were digested in an acidic medium by heating in a microwave oven. The digestion methods were validated against reference materials, with matrix similar to sample matrix and certified in total contents of the elements studied. The results showed the high biosorption capacity of the samples studied, especially regarding the high arsenic contents in some species of brown algae (Phaeophyta division). In terrestrial plants, the translocation, accumulation and bioavailability factors of the elements studied were calculated. Thus, the plant species Corrigiola telephiifolia was identified as possible lead accumulator and arsenic hyperaccumulator. The determination of water‐soluble arsenic species in the samples studied was carried out by high performance liquid chromatography (HPLC) coupled to ICP‐AES, HG‐ICP‐AES and HG‐AFS, including a prior photo‐oxidation step. The chromatographic methods developed, by anion and cation exchange, allowed us to differentiate up to eleven arsenic species. The sample analysis required the optimization of extraction methods, choosing the microwave assisted extraction (MAE) with deionized water. On the other hand, the stability of total arsenic and water‐soluble arsenic species in algae, both in the solid samples and in the water extracts, was studied, assessing the suitable storage conditions. In the case of plant samples, the application of a multivariate experimental design allowed us to optimize the extraction method and differentiate between the arsenic species present as simple ions of higher mobility and the arsenic more strongly bound to structural components. The presence of arsenite (As(III)) and arsenate (As(V)) was identified in plant samples, as well as monomethylarsonic acid (MMA) and trimethylarsine oxide (TMAO) in some cases. Regarding algae, toxic arsenic species were found in most of them, both As(V) and dimethylarsinic acid (DMA), as well as up to four arsenosugars. These results were discussed according to the current legislation, showing the need to develop specific regulations to control this kind of food products. The determination of lipid‐soluble arsenic species in alga samples was performed by reversed‐phase HPLC coupled to inductively coupled plasma and electrospray mass spectrometry (ICP‐MS and ESI‐MS), in order to establish the structure of these compounds by determining the corresponding molecular masses. For this purpose, it was necessary to develop an extraction method, as well as a clean‐up method of the extracts. The method developed permitted the identification of fourteen lipid‐soluble arsenic compounds in algae, corresponding to three arsenic‐hydrocarbons and eleven arsenosugarphospholipids, as well as two unknown compounds. Accurate mass measurements of the identified compounds were performed by gas chromatography coupled to mass spectrometry (GC‐MS) and high resolution mass spectrometry (HR‐MS).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work describes the structural and piezoelectric assessment of aluminum nitride (AlN) thin films deposited by pulsed-DC reactive sputtering on insulating substrates. We investigate the effect of different insulating seed layers on AlN properties (crystallinity, residual stress and piezoelectric activity). The seed layers investigated, silicon nitride (Si3N4), silicon dioxide (SiO2), amorphous tantalum oxide (Ta2O5), and amorphous or nano-crystalline titanium oxide (TiO2) are deposited on glass plates to a thickness lower than 100 nm. Before AlN films deposition, their surface is pre-treated with a soft ionic cleaning, either with argon or nitrogen ions. Only AlN films grown of TiO2 seed layers exhibit a significant piezoelectric activity to be used in acoustic device applications. Pure c-axis oriented films, with FWHM of rocking curve of 6º, stress below 500 MPa, and electromechanical coupling factors measured in SAW devices of 1.25% are obtained. The best AlN films are achieved on amorphous TiO2 seed layers deposited at high target power and low sputtering pressure. On the other hand, AlN films deposited on Si3N4, SiO2 and TaOx exhibit a mixed orientation, high stress and very low piezoelectric activity, which invalidate their use in acoustic devices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Justification of the need and demand of experimental facilities to test and validate materials for first wall in laser fusion reactors - Characteristics of the laser fusion products - Current ?possible? facilities for tests Ultraintense Lasers as ?complete? solution facility - Generation of ion pulses - Generation of X-ray pulses - Generation of other relevant particles (electrons, neutrons..)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The kinetics of amorphization in crystalline SiO2 (α-quartz) under irradiation with swift heavy ions (O+1 at 4 MeV, O+4 at 13 MeV, F+2 at 5 MeV, F+4 at 15 MeV, Cl+3 at 10 MeV, Cl+4 at 20 MeV, Br+5 at 15 and 25 MeV and Br+8 at 40 MeV) has been analyzed in this work with an Avrami-type law and also with a recently developed cumulative approach (track-overlap model). This latter model assumes a track morphology consisting of an amorphous core (area σ) and a surrounding defective halo (area h), both being axially symmetric. The parameters of the two approaches which provide the best fit to the experimental data have been obtained as a function of the electronic stopping power Se. The extrapolation of the σ(Se) dependence yields a threshold value for amorphization, Sth ≈ 2.1 keV/nm; a second threshold is also observed around 4.1 keV/nm. We believe that this double-threshold effect could be related to the appearance of discontinuous tracks in the region between 2.1 and 4.1 keV/nm. For stopping power values around or below the lower threshold, where the ratio h/σ is large, the track-overlap model provides a much better fit than the Avrami function. Therefore, the data show that a right modeling of the amorphization kinetics needs to take into account the contribution of the defective track halo. Finally, a short comparative discussion with the kinetic laws obtained for elastic collision damage is given.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have determined the cross-section σ for color center generation under single Br ion impacts on amorphous SiO2. The evolution of the cross-sections, σ(E) and σ(Se), show an initial flat stage that we associate to atomic collision mechanisms. Above a certain threshold value (Se > 2 keV/nm), roughly coinciding with that reported for the onset of macroscopic disorder (compaction), σ shows a marked increase due to electronic processes. In this regime, a energetic cost of around 7.5 keV is necessary to create a non bridging oxygen hole center-E′ (NBOHC/E′) pair, whatever the input energy. The data appear consistent with a non-radiative decay of self-trapped excitons.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ionoluminescence (IL) has been used in this work as a sensitive tool to probe the microscopic electronic processes and structural changes produced on quartz by the irradiation with swift heavy ions. The IL yields have been measured as a function of irradiation fluence and electronic stopping power. The results are consistent with the assignment of the 2.7 eV (460 nm) band to the recombination of self-trapped excitons at the damaged regions in the irradiated material. Moreover, it was possible to determine the threshold for amorphization by a single ion impact, as 1:7 keV/nm, which agrees well with the results of previous studies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Due to the particular characteristics of the fusion products, i.e. very short pulses (less than a few μs long for ions when arriving to the walls; less than 1 ns long for X-rays), very high fluences ( 10 13 particles/cm 2 for both ions and X rays photons) and broad particle energy spectra (up to 10 MeV ions and 100 keV photons), the laser fusion community lacks of facilities to accurately test plasma facing materials under those conditions. In the present work, the ability of ultraintese lasers to create short pulses of energetic particles and high fluences is addressed as a solution to reproduce those ion and X-ray bursts. Based on those parameters, a comparison between fusion ion and laser driven ion beams is presented and discussed, describing a possible experimental set-up to generate with lasers the appropriate ion pulses. At the same time, the possibility of generating X-ray or neutron beams which simulate those of laser fusion environments is also indicated and assessed under current laser intensities. It is concluded that ultraintense lasers should play a relevant role in the validation of materials for laser fusion facilities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ability of ultraintese lasers to create short pulses of energetic particles and high fluences is addressed as a solution to reproduce ion and X-ray ICF bursts for the characterization and validation of plasma facing components. The possibility of using a laser neutron source for material testing will also be discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Irradiation with swift heavy ions (SHI), roughly defined as those having atomic masses larger than 15 and energies exceeding 1 MeV/amu, may lead to significant modification of the irradiated material in a nanometric region around the (straight) ion trajectory (i.e., latent tracks). In the case of amorphous silica it has been reported that SHI irradiation originates nano-tracks of either higher density than the virgin material (for low electronic stopping powers, Se < 7 keV/nm) [1] or having a low-density core and a dense shell (Se > 12 keV/nm) [2]. The intermediate region has not been studied in detail but we will show in this work that essentially no changes in density occur in this zone. An interesting effect of the compaction is that the refractive index is increased with respect to that of the surroundings. In the first Se region it is clear that track overlapping leads to continuous amorphous layers that present a significant contrast with respect to the pristine substrate and this has been used to produce optical waveguides. The optical effects of intermediate and high stopping powers, on the other hand, are largely unknown so far. In this work we have studied theoretically (molecular dynamics and optical simulations) and experimentally (irradiation with SHI and optical characterization) the dependence of the macroscopic optical properties (i.e., the refractive index of the effective medium, n_EMA) on the electronic stopping power of the incoming ions. Our results show that the refractive index of the irradiated silica is not increased in the intermediate region, as expected; however, the core-shell tracks of the high-Se region produce a quite effective enhancement of n_EMA that could prove attractive for the fabrication of optical waveguides at ultralow fluences (as low as 1E11 cm^-2). 1. J. Manzano, J. Olivares, F. Agulló-López, M. L. Crespillo, A. Moroño, and E. Hodgson, "Optical waveguides obtained by swift-ion irradiation on silica (a-SiO2)," Nucl. Instrum. Meth. B 268, 3147-3150 (2010). 2. P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, "Fine structure in swift heavy ion tracks in amorphous SiO2," Phys. Rev. Lett. 101, 175503 (2008).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The asymptotic structure of the far-wake behind a charged body in a rarefied plasma flow is investigated under the assumption of small ion-to-electron temperature ratio and of flow speed hypersonic with respect to the ions but not with respect to the electrons. It is found that waves are excited even if the flow is subacoustic (flow velocity less than the ion-acoustic speed). For both superacoustic and subacoustic velocities a steep wave front develops separating the weakly perturbed, quasineutral plasma ahead, from the region behind where ion waves appear. Near the axis a trailing front develops;the region between this and the axis is quasineutral for superacoustic speeds. The decay laws in all of these regions, the self-similar structure of the fronts and the general character of the waves are determined.The damping of the waves and special flow detail for bodies large and small compared with the Debye length are discussed. A nonlinear analysis of the leading wave front in superacoustic flow is carried out. A hyperacoustic equivalence principle is presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The recently noticed disagreement between ionospheric charged-particle temperature values obtained from ground-based (incoherent backscatter) and in situ (Langmuir probe type) measurements is considered; it is suggested that a main cause of disagreement lies in the poor theoretical basis of present in situ measurements. It is pointed out that the usually neglected geomagnetic field influence may result in too high an electron temperature. It is also shown that the theory used at present to interpret data from ion retarding potential analyzers has serious pitfalls, and that these devices greatly disturb the surrounding plasma when measuring ion temperature. Finally, it is shown how the ion temperature can be accurately obtained from the characteristic of a cylindrical Langmuir probe in a rarefied plasma flow.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The N+2 ion yield of the N2 molecule has been measured at the N 1s → Rydberg excitations. It displays Fano-type line shapes due to interference between direct outer-valence photoionization and participator decay of the core-excited Rydberg states. The N+2 ion yield is compared with the total intensity of the outer-valence photoelectron lines obtained recently with electron spectroscopy (Kivimäki et al 2012 Phys. Rev. A 86 012516). The increasing difference between the two curves at the higher core-to-Rydberg excitations is most likely due to soft x-ray emission processes that are followed by autoionization. The results also suggest that resonant Auger decay from the core–valence doubly excited states contributes to the N+2 ion yield at the photon energies that are located on both sides of the N 1s ionization limit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, a new methodology is devised to obtain the fracture properties of nuclear fuel cladding in the hoop direction. The proposed method combines ring compression tests and a finite element method that includes a damage model based on cohesive crack theory, applied to unirradiated hydrogen-charged ZIRLOTM nuclear fuel cladding. Samples with hydrogen concentrations from 0 to 2000 ppm were tested at 20 �C. Agreement between the finite element simulations and the experimental results is excellent in all cases. The parameters of the cohesive crack model are obtained from the simulations, with the fracture energy and fracture toughness being calculated in turn. The evolution of fracture toughness in the hoop direction with the hydrogen concentration (up to 2000 ppm) is reported for the first time for ZIRLOTM cladding. Additionally, the fracture micromechanisms are examined as a function of the hydrogen concentration. In the as-received samples, the micromechanism is the nucleation, growth and coalescence of voids, whereas in the samples with 2000 ppm, a combination of cuasicleavage and plastic deformation, along with secondary microcracking is observed.