12 resultados para multi-objective decision making
em Universidad Politécnica de Madrid
Resumo:
The objective of this study was to propose a multi-criteria optimization and decision-making technique to solve food engineering problems. This technique was demostrated using experimental data obtained on osmotic dehydratation of carrot cubes in a sodium chloride solution. The Aggregating Functions Approach, the Adaptive Random Search Algorithm, and the Penalty Functions Approach were used in this study to compute the initial set of non-dominated or Pareto-optimal solutions. Multiple non-linear regression analysis was performed on a set of experimental data in order to obtain particular multi-objective functions (responses), namely water loss, solute gain, rehydration ratio, three different colour criteria of rehydrated product, and sensory evaluation (organoleptic quality). Two multi-criteria decision-making approaches, the Analytic Hierarchy Process (AHP) and the Tabular Method (TM), were used simultaneously to choose the best alternative among the set of non-dominated solutions. The multi-criteria optimization and decision-making technique proposed in this study can facilitate the assessment of criteria weights, giving rise to a fairer, more consistent, and adequate final compromised solution or food process. This technique can be useful to food scientists in research and education, as well as to engineers involved in the improvement of a variety of food engineering processes.
Resumo:
In the mid-long-term after a nuclear accident, the contamination of drinking water sources, fish and other aquatic foodstuffs, irrigation supplies and people?s exposure during recreational activities may create considerable public concern, even though dose assessment may in certain situations indicate lesser importance than for other sources, as clearly experienced in the aftermath of past accidents. In such circumstances there are a number of available countermeasure options, ranging from specific chemical treatment of lakes to bans on fish ingestion or on the use of water for crop irrigation. The potential actions can be broadly grouped into four main categories, chemical, biological, physical and social. In some cases a combination of actions may be the optimal strategy and a decision support system (DSS) like MOIRA-PLUS can be of great help to optimise a decision. A further option is of course not to take any remedial actions, although this may also have significant socio-economic repercussions which should be adequately evaluated. MOIRA-PLUS is designed to allow for a reliable assessment of the long-term evolution of the radiological situation and of feasible alternative rehabilitation strategies, including an objective evaluation of their social, economic and ecological impacts in a rational and comprehensive manner. MOIRA-PLUS also features a decision analysis methodology, making use of multi-attribute analysis, which can take into account the preferences and needs of different types of stakeholders. The main functions and elements of the system are described summarily. Also the conclusions from end-user?s experiences with the system are discussed, including exercises involving the organizations responsible for emergency management and the affected services, as well as different local and regional stakeholders. MOIRAPLUS has proven to be a mature system, user friendly and relatively easy to set up. It can help to better decisionmaking by enabling a realistic evaluation of the complete impacts of possible recovery strategies. Also, the interaction with stakeholders has allowed identifying improvements of the system that have been recently implemented.
Resumo:
The objective of this research was the implementation of a participatory process for the development of a tool to support decision making in water management. The process carried out aims at attaining an improved understanding of the water system and an encouragement of the exchange of knowledge and views between stakeholders to build a shared vision of the system. In addition, the process intends to identify impacts of possible solutions to given problems, which will help to take decisions.
Resumo:
Geologic storage of carbon dioxide (CO2) has been proposed as a viable means for reducing anthropogenic CO2 emissions. Once injection begins, a program for measurement, monitoring, and verification (MMV) of CO2 distribution is required in order to: a) research key features, effects and processes needed for risk assessment; b) manage the injection process; c) delineate and identify leakage risk and surface escape; d) provide early warnings of failure near the reservoir; and f) verify storage for accounting and crediting. The selection of the methodology of monitoring (characterization of site and control and verification in the post-injection phase) is influenced by economic and technological variables. Multiple Criteria Decision Making (MCDM) refers to a methodology developed for making decisions in the presence of multiple criteria. MCDM as a discipline has only a relatively short history of 40 years, and it has been closely related to advancements on computer technology. Evaluation methods and multicriteria decisions include the selection of a set of feasible alternatives, the simultaneous optimization of several objective functions, and a decision-making process and evaluation procedures that must be rational and consistent. The application of a mathematical model of decision-making will help to find the best solution, establishing the mechanisms to facilitate the management of information generated by number of disciplines of knowledge. Those problems in which decision alternatives are finite are called Discrete Multicriteria Decision problems. Such problems are most common in reality and this case scenario will be applied in solving the problem of site selection for storing CO2. Discrete MCDM is used to assess and decide on issues that by nature or design support a finite number of alternative solutions. Recently, Multicriteria Decision Analysis has been applied to hierarchy policy incentives for CCS, to assess the role of CCS, and to select potential areas which could be suitable to store. For those reasons, MCDM have been considered in the monitoring phase of CO2 storage, in order to select suitable technologies which could be techno-economical viable. In this paper, we identify techniques of gas measurements in subsurface which are currently applying in the phase of characterization (pre-injection); MCDM will help decision-makers to hierarchy the most suitable technique which fit the purpose to monitor the specific physic-chemical parameter.
Resumo:
There is an increasing awareness among all kinds of organisations (in business,government and civil society) about the benefits of jointly working with stakeholders to satisfy both their goals and the social demands placed upon them. This is particularly the case within corporate social responsibility (CSR) frameworks. In this regard, multi-criteria tools for decision-making like the analytic hierarchy process (AHP) described in the paper can be useful for the building relationships with stakeholders. Since these tools can reveal decision-maker’s preferences, the integration of opinions from various stakeholders in the decision-making process may result in better and more innovative solutions with significant shared value. This paper is based on ongoing research to assess the feasibility of an AHP-based model to support CSR decisions in large infrastructure projects carried out by Red Electrica de España, the sole transmission agent and operator of the Spanishelectricity system.
Resumo:
Following the Integrated Water Resources Management approach, the European Water Framework Directive demands Member States to develop water management plans at the catchment level. Those plans have to integrate the different interests and must be developed with stakeholder participation. To face these requirements, managers need tools to assess the impacts of possible management alternatives on natural and socio-economic systems. These tools should ideally be able to address the complexity and uncertainties of the water system, while serving as a platform for stakeholder participation. The objective of our research was to develop a participatory integrated assessment model, based on the combination of a crop model, an economic model and a participatory Bayesian network, with an application in the middle Guadiana sub-basin, in Spain. The methodology is intended to capture the complexity of water management problems, incorporating the relevant sectors, as well as the relevant scales involved in water management decision making. The integrated model has allowed us testing different management, market and climate change scenarios and assessing the impacts of such scenarios on the natural system (crops), on the socio-economic system (farms) and on the environment (water resources). Finally, this integrated assessment modelling process has allowed stakeholder participation, complying with the main requirements of current European water laws.
Resumo:
Background: It is known that competence to make decisions is a fundamental aspect of sport competition. Objective: This study has analyzed the decision profile of a sample of Spanish football players of different levels of expertise. Methods: 690 Spanish football players of national and international level completed the decision making questionnaire, which cover three dimensions ? perceived decision competence, decision anxiety and commitment with decision learning. MANCOVA and ANOVA analysis were carried out to analyse the differences in each dimension based on the level of expertise. Results: Results showed that perception of decision making competence increased and the anxiety decreased with the level of expertise. Conclusions: This study confirmed the usefulness of this questionnaire in the process of training for coaches and sport psychologists.
Resumo:
Background: It is known that competence to make decisions is a fundamental aspect of sport competition. Objective: This study has analyzed the decision profile of a sample of Spanish football players of different levels of expertise. Methods: 690 Spanish football players of national and international level completed the decision mak- ing questionnaire, which cover three dimensions ? perceived decision competence, decision anxiety and commit- ment with decision learning. MANCOVA and ANOVA analysis were carried out to analyse the differences in each dimension based on the level of expertise. Results: Results showed that perception of decision making competence increased and the anxiety decreased with the level of expertise. Conclusions: This study confirmed the usefulness of this questionnaire in the process of training for coaches and sport psychologists.
Resumo:
We consider a groupdecision-making problem within multi-attribute utility theory, in which the relative importance of decisionmakers (DMs) is known and their preferences are represented by means of an additive function. We allow DMs to provide veto values for the attribute under consideration and build veto and adjust functions that are incorporated into the additive model. Veto functions check whether alternative performances are within the respective veto intervals, making the overall utility of the alternative equal to 0, where as adjust functions reduce the utilty of the alternative performance to match the preferences of other DMs. Dominance measuring methods are used to account for imprecise information in the decision-making scenario and to derive a ranking of alternatives for each DM. Specifically, ordinal information about the relative importance of criteria is provided by each DM. Finally, an extension of Kemeny's method is used to aggregate the alternative rankings from the DMs accounting for the irrelative importance.
Resumo:
The global economic structure, with its decentralized production and the consequent increase in freight traffic all over the world, creates considerable problems and challenges for the freight transport sector. This situation has led shipping to become the most suitable and cheapest way to transport goods. Thus, ports are configured as nodes with critical importance in the logistics supply chain as a link between two transport systems, sea and land. Increase in activity at seaports is producing three undesirable effects: increasing road congestion, lack of open space in port installations and a significant environmental impact on seaports. These adverse effects can be mitigated by moving part of the activity inland. Implementation of dry ports is a possible solution and would also provide an opportunity to strengthen intermodal solutions as part of an integrated and more sustainable transport chain, acting as a link between road and railway networks. In this sense, implementation of dry ports allows the separation of the links of the transport chain, thus facilitating the shortest possible routes for the lowest capacity and most polluting means of transport. Thus, the decision of where to locate a dry port demands a thorough analysis of the whole logistics supply chain, with the objective of transferring the largest volume of goods possible from road to more energy efficient means of transport, like rail or short-sea shipping, that are less harmful to the environment. However, the decision of where to locate a dry port must also ensure the sustainability of the site. Thus, the main goal of this article is to research the variables influencing the sustainability of dry port location and how this sustainability can be evaluated. With this objective, in this paper we present a methodology for assessing the sustainability of locations by the use of Multi-Criteria Decision Analysis (MCDA) and Bayesian Networks (BNs). MCDA is used as a way to establish a scoring, whilst BNs were chosen to eliminate arbitrariness in setting the weightings using a technique that allows us to prioritize each variable according to the relationships established in the set of variables. In order to determine the relationships between all the variables involved in the decision, giving us the importance of each factor and variable, we built a K2 BN algorithm. To obtain the scores of each variable, we used a complete cartography analysed by ArcGIS. Recognising that setting the most appropriate location to place a dry port is a geographical multidisciplinary problem, with significant economic, social and environmental implications, we consider 41 variables (grouped into 17 factors) which respond to this need. As a case of study, the sustainability of all of the 10 existing dry ports in Spain has been evaluated. In this set of logistics platforms, we found that the most important variables for achieving sustainability are those related to environmental protection, so the sustainability of the locations requires a great respect for the natural environment and the urban environment in which they are framed.
Resumo:
In crop insurance, the accuracy with which the insurer quantifies the actual risk is highly dependent on the availability on actual yield data. Crop models might be valuable tools to generate data on expected yields for risk assessment when no historical records are available. However, selecting a crop model for a specific objective, location and implementation scale is a difficult task. A look inside the different crop and soil modules to understand how outputs are obtained might facilitate model choice. The objectives of this paper were (i) to assess the usefulness of crop models to be used within a crop insurance analysis and design and (ii) to select the most suitable crop model for drought risk assessment in semi-arid regions in Spain. For that purpose first, a pre-selection of crop models simulating wheat yield under rainfed growing conditions at the field scale was made, and second, four selected models (Aquacrop, CERES- Wheat, CropSyst and WOFOST) were compared in terms of modelling approaches, process descriptions and model outputs. Outputs of the four models for the simulation of winter wheat growth are comparable when water is not limiting, but differences are larger when simulating yields under rainfed conditions. These differences in rainfed yields are mainly related to the dissimilar simulated soil water availability and the assumed linkages with dry matter formation. We concluded that for the simulation of winter wheat growth at field scale in such semi-arid conditions, CERES-Wheat and CropSyst are preferred. WOFOST is a satisfactory compromise between data availability and complexity when detail data on soil is limited. Aquacrop integrates physiological processes in some representative parameters, thus diminishing the number of input parameters, what is seen as an advantage when observed data is scarce. However, the high sensitivity of this model to low water availability limits its use in the region considered. Contrary to the use of ensembles of crop models, we endorse that efforts be concentrated on selecting or rebuilding a model that includes approaches that better describe the agronomic conditions of the regions in which they will be applied. The use of such complex methodologies as crop models is associated with numerous sources of uncertainty, although these models are the best tools available to get insight in these complex agronomic systems.
Resumo:
La presente tesis doctoral se enmarca dentro del concepto de la sistematización del conocimiento en arquitectura, más concretamente en el campo de las construcciones arquitectónicas y la toma de decisiones en la fase de proyecto de envolventes arquitectónicas multicapa. Por tanto, el objetivo principal es el establecimiento de las bases para una toma de decisiones informadas durante el proyecto de una envolvente multicapa con el fin de colaborar en su optimización. Del mismo modo que la historia de la arquitectura está relacionada con la historia de la innovación en construcción, la construcción está sujeta a cambios como respuesta a los fracasos anteriores. En base a esto, se identifica la toma de decisiones en la fase de proyecto como el estadio inicial para establecer un punto estratégico de reflexión y de control sobre los procesos constructivos. La presente investigación, conceptualmente, define los parámetros intervinientes en el proyecto de envolventes arquitectónicas multicapa a partir de una clasificación y sistematización de todos los componentes (elementos, unidades y sistemas constructivos) utilizados en las fachadas multicapa. Dicha sistematización se materializa en una hoja matriz de datos en la que, dentro de una organización a modo de árbol, se puede acceder a la consulta de cada componente y de su caracterización. Dicha matriz permite la incorporación futura de cualquier componente o sistema nuevo que aparezca en el mercado, relacionándolo con aquellos con los que comparta ubicación, tipo de material, etc. Con base en esa matriz de datos, se diseña la sistematización de la toma de decisiones en la fase de proyecto de una envolvente arquitectónica, en concreto, en el caso de una fachada. Operativamente, el resultado se presenta como una herramienta que permite al arquitecto o proyectista reflexionar y seleccionar el sistema constructivo más adecuado, al enfrentarse con las distintas decisiones o elecciones posibles. La herramienta se basa en las elecciones iniciales tomadas por el proyectista y se estructura, a continuación y sucesivamente, en distintas aproximaciones, criterios, subcriterios y posibilidades que responden a los distintos avances en la definición del sistema constructivo. Se proponen una serie de fichas operativas de comprobación que informan sobre el estadio de decisión y de definición de proyecto alcanzados en cada caso. Asimismo, el sistema permite la conexión con otros sistemas de revisión de proyectos para fomentar la reflexión sobre la normalización de los riesgos asociados tanto al proprio sistema como a su proceso constructivo y comportamiento futuros. La herramienta proporciona un sistema de ayuda para ser utilizado en el proceso de toma de decisiones en la fase de diseño de una fachada multicapa, minimizando la arbitrariedad y ofreciendo una cualificación previa a la cuantificación que supondrá la elaboración del detalle constructivo y de su medición en las sucesivas fases del proyecto. Al mismo tiempo, la sistematización de dicha toma de decisiones en la fase del proyecto puede constituirse como un sistema de comprobación en las diferentes fases del proceso de decisión proyectual y de definición de la envolvente de un edificio. ABSTRACT The central issue of this doctoral Thesis is founded on the framework of the concept of the systematization of knowledge in architecture, in particular, in respect of the field of building construction and the decision making in the design stage of multilayer building envelope projects. Therefore, the main objective is to establish the bases for knowledgeable decision making during a multilayer building envelope design process, in order to collaborate with its optimization. Just as the history of architecture is connected to the history of innovation in construction, construction itself is subject to changes as a response to previous failures. On this basis, the decisions made during the project design phase are identified as the initial state to establish an strategic point for reflection and control, referred to the constructive processes. Conceptually, this research defines the parameters involving the multilayer building envelope projects, on the basis of a classification and systematization for all the components (elements, constructive units and constructive systems) used in multilayer façades. The mentioned systematization is materialized into a data matrix sheet in which, following a tree‐like organization, the access to every single component and its characterization is possible. The above data matrix allows the future inclusion of any new component or system that may appear in the construction market. That new component or system can be put into a relationship with another, which it shares location, type of material,… with. Based on the data matrix, the systematization of the decision making process for a building envelope design stage is designed, more particularly in the case of a façade. Putting this into practice, it is represented as a tool which allows the architect or the designer, to reflect and to select the appropriate building system when facing the different elections or the different options. The tool is based on the initial elections taken by the designer. Then and successively, it is shaped on the form of different operative steps, criteria, sub‐criteria and possibilities which respond to a different progress in the definition of the building construction system. In order to inform about the stage of the decision and the definition reached by the project in every particular case, a range of operative sheets are proposed. Additionally, the system allows the connection with other reviewing methods for building projects. The aim of this last possibility is to encourage the reflection on standardization of the associated risks to the building system itself and its future performance. The tool provides a helping system to be used during the decision making process for a multilayer façade design. It minimizes the arbitrariness and offers a qualification previous to the quantification that will be done with the development of the construction details and their bill of quantities, that in subsequent project stages will be executed. At the same time, the systematization of the mentioned decision making during the design phase, can be found as a checking system in the different stages of the decision making design process and in the different stages of the building envelope definition.