5 resultados para modulo gestione messaggistica HL7 sanità
em Universidad Politécnica de Madrid
Resumo:
I suoli determinano la fisiologia della coltura, le caratteristiche del vino e l’economicità della coltura.
Resumo:
El trabajo ha sido realizado dentro del marco de los proyectos EURECA (Enabling information re-Use by linking clinical REsearch and Care) e INTEGRATE (Integrative Cancer Research Through Innovative Biomedical Infrastructures), en los que colabora el Grupo de Informática Biomédica de la UPM junto a otras universidades e instituciones sanitarias europeas. En ambos proyectos se desarrollan servicios e infraestructuras con el objetivo principal de almacenar información clínica, procedente de fuentes diversas (como por ejemplo de historiales clínicos electrónicos de hospitales, de ensayos clínicos o artículos de investigación biomédica), de una forma común y fácilmente accesible y consultable para facilitar al máximo la investigación de estos ámbitos, de manera colaborativa entre instituciones. Esta es la idea principal de la interoperabilidad semántica en la que se concentran ambos proyectos, siendo clave para el correcto funcionamiento del software del que se componen. El intercambio de datos con un modelo de representación compartido, común y sin ambigüedades, en el que cada concepto, término o dato clínico tendrá una única forma de representación. Lo cual permite la inferencia de conocimiento, y encaja perfectamente en el contexto de la investigación médica. En concreto, la herramienta a desarrollar en este trabajo también está orientada a la idea de maximizar la interoperabilidad semántica, pues se ocupa de la carga de información clínica con un formato estandarizado en un modelo común de almacenamiento de datos, implementado en bases de datos relacionales. El trabajo ha sido desarrollado en el periodo comprendido entre el 3 de Febrero y el 6 de Junio de 2014. Se ha seguido un ciclo de vida en cascada para la organización del trabajo realizado en las tareas de las que se compone el proyecto, de modo que una fase no puede iniciarse sin que se haya terminado, revisado y aceptado la fase anterior. Exceptuando la tarea de documentación del trabajo (para la elaboración de esta memoria), que se ha desarrollado paralelamente a todas las demás. ----ABSTRACT--- The project has been developed during the second semester of the 2013/2014 academic year. This Project has been done inside EURECA and INTEGRATE European biomedical research projects, where the GIB (Biomedical Informatics Group) of the UPM works as a partner. Both projects aim is to develop platforms and services with the main goal of storing clinical information (e.g. information from hospital electronic health records (EHRs), clinical trials or research articles) in a common way and easy to access and query, in order to support medical research. The whole software environment of these projects is based on the idea of semantic interoperability, which means the ability of computer systems to exchange data with unambiguous and shared meaning. This idea allows knowledge inference, which fits perfectly in medical research context. The tool to develop in this project is also "semantic operability-oriented". Its purpose is to store standardized clinical information in a common data model, implemented in relational databases. The project has been performed during the period between February 3rd and June 6th, of 2014. It has followed a "Waterfall model" of software development, in which progress is seen as flowing steadily downwards through its phases. Each phase starts when its previous phase has been completed and reviewed. The task of documenting the project‟s work is an exception; it has been performed in a parallel way to the rest of the tasks.
Resumo:
El trabajo presentado a lo largo de este documento es el resultado del TFG1 realizado por Israel Suárez Santiago, alumno de la Escuela Técnica Superior de Ingenieros Informáticos (ETSIINF) de la Universidad Politécnica de Madrid (UPM). Dicho trabajo tiene como finalidad proporcionar una herramienta que, basada en estándares previamente estudiados, permita la fácil creación y gestión de plantillas de mensajes HL7v32 a las que posteriormente se le añadirán datos clínicos que serán insertados en una base de datos para su fácil acceso y consulta. La herramienta desarrollada únicamente facilita una serie de opciones para la creación de la plantilla en sí, que servirá como base para la creación de mensajes HL7v3, es decir, no permite la inclusión de datos específicos en las plantillas generadas, que deberá hacerse con alguna herramienta externa o bien manualmente. Las plantillas generadas por la herramienta se basan principalmente en el estándar CDA3, que proporciona una amplia guía para la correcta generación de mensajes HL7v3. La herramienta garantiza que las plantillas resultantes estarán correctamente formadas, siendo acordes al estándar anteriormente citado y siendo, además, sintácticamente correctas, es decir, el documento .xml generado no contendrá errores. ---ABSTRACT---This document is the result of the TFG developed by Israel Suárez Santiago, student of Escuela Técnica Superior de Ingenieros Informáticos (ETSIINF) of the Universidad Politécnica de Madrid (UPM). This work aims to offer a tool based on standards that can facilitate and manage the creation of HL7v3 templates. Clinical data will be added to those templates in order to load them into a database and query them fast and easily. The tool only facilitates several options to create the template, that will be used to generate the HL7v3 messages, but it does not permit the inclusion of data on them. The inclusion of data will be done manually or using an external tool. The generated templates are based mainly on the CDA1 standard, that provides a widely guide to create HL7v32 messages. The tool guarantees that the resulting templates have been correctly generated, following the previous standard and with no errors in the .xml document generated.
Resumo:
Hoy día, en la era post genómica, los ensayos clínicos de cáncer implican la colaboración de diversas instituciones. El análisis multicéntrico y retrospectivo requiere de métodos avanzados para garantizar la interoperabilidad semántica. En este escenario, el objetivo de los proyectos EURECA e INTEGRATE es proporcionar una infraestructura para compartir conocimientos y datos de los ensayos clínicos post genómicos de cáncer. Debido en gran parte a la gran complejidad de los procesos colaborativos de las instituciones, provoca que la gestión de una información tan heterogénea sea un desafío dentro del área médica. Las tecnologías semánticas y las investigaciones relacionadas están centradas en búsqueda de conocimiento de la información extraída, permitiendo una mayor flexibilidad y usabilidad de los datos extraidos. Debido a la falta de estándares adoptados por estas entidades y la complejidad de los datos procedentes de ensayos clínicos, una capacidad semántica es esencial para asegurar la integración homogénea de esta información. De otra manera, los usuarios finales necesitarán conocer cada modelo y cada formato de dato de las instituciones participantes en cada estudio. Para proveer de una capa de interoperabilidad semántica, el primer paso es proponer un\Common Data Model" (CDM) que represente la información a almacenar, y un \Core Dataset" que permita el uso de múltiples terminologías como vocabulario compartido. Una vez que el \Core Dataset" y el CDM han sido seleccionados, la manera en la que realizar el mapping para unir los conceptos de una terminología dada al CDM, requiere de una mecanismo especial para realizar dicha labor. Dicho mecanismo, debe definir que conceptos de diferentes vocabularios pueden ser almacenados en determinados campos del modelo de datos, con la finalidad de crear una representación común de la información. El presente proyecto fin de grado, presenta el desarrollo de un servicio que implementa dicho mecanismo para vincular elementos de las terminologías médicas SNOMED CT, LOINC y HGNC, con objetos del \Health Level 7 Reference Information Model" (HL7 RIM). El servicio propuesto, y nombrado como TermBinding, sigue las recomendaciones del proyecto TermInfo del grupo HL7, pero también se tienen en cuenta cuestiones importantes que surgen al enlazar entre las citadas terminologas y el modelo de datos planteado. En este proceso de desarrollo de la interoperabilidad semántica en ensayos clínicos de cáncer, los datos de fuentes heterogéneas tienen que ser integrados, y es requisito que se deba habilitar una interfaz de acceso homogéneo a toda esta información. Para poder hacer unificar los datos provenientes de diferentes aplicaciones y bases de datos, es esencial representar todos estos datos de una manera canónica o normalizada. La estandarización de un determinado concepto de SNOMED CT, simplifica las recomendaciones del proyecto TermInfo del grupo HL7, utilizadas para poder almacenar cada concepto en el modelo de datos. Siguiendo este enfoque, la interoperabilidad semántica es conseguida con éxito para conceptos SNOMED CT, sean o no post o pre coordinados, así como para las terminologías LOINC y HGNC. Los conceptos son estandarizados en una forma normal que puede ser usada para unir los datos al \Common Data Model" basado en el RIM de HL7. Aunque existen limitaciones debido a la gran heterogeneidad de los datos a integrar, un primer prototipo del servicio propuesto se está utilizando con éxito en el contexto de los proyectos EURECA e INTEGRATE. Una mejora en la interoperabilidad semántica de los datos de ensayos clínicos de cáncer tiene como objetivo mejorar las prácticas en oncología.