8 resultados para mobile art

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Application of the spectrum analyzer for illustrating several concepts associated with mobile communications is discussed. Specifically, two groups of observable features are described. First, time variation and frequency selectivity of multipath propagation can be revealed by carrying out simple measurements on commercial-network GSM and UMTS signals. Second, the main time-domain and frequency-domain features of GSM and UMTS radio signals can be observed. This constitutes a valuable tool for teaching mobile communication courses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Augmented reality (AR) is been increasingly used in mobile devices. Most of the available applications are set to work outdoors, mainly due to the availability of a reliable positioning system. Nevertheless, indoor (smart) spaces offer a lot of opportunities of creating new service concepts. In particular, in this paper we explore the applicability of mobile AR to hospitality environments (hotels and similar establishments). From the state-of-the-art of technologies and applications, a portfolio of services has been identified and a prototype using off-the-shelf technologies has been designed. Our objective is to identify the next technological challenges to overcome in order to have suitable underlying infrastructures and innovative services which enhance the traveller?s experience.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En esta tesis se aborda la detección y el seguimiento automático de vehículos mediante técnicas de visión artificial con una cámara monocular embarcada. Este problema ha suscitado un gran interés por parte de la industria automovilística y de la comunidad científica ya que supone el primer paso en aras de la ayuda a la conducción, la prevención de accidentes y, en última instancia, la conducción automática. A pesar de que se le ha dedicado mucho esfuerzo en los últimos años, de momento no se ha encontrado ninguna solución completamente satisfactoria y por lo tanto continúa siendo un tema de investigación abierto. Los principales problemas que plantean la detección y seguimiento mediante visión artificial son la gran variabilidad entre vehículos, un fondo que cambia dinámicamente debido al movimiento de la cámara, y la necesidad de operar en tiempo real. En este contexto, esta tesis propone un marco unificado para la detección y seguimiento de vehículos que afronta los problemas descritos mediante un enfoque estadístico. El marco se compone de tres grandes bloques, i.e., generación de hipótesis, verificación de hipótesis, y seguimiento de vehículos, que se llevan a cabo de manera secuencial. No obstante, se potencia el intercambio de información entre los diferentes bloques con objeto de obtener el máximo grado posible de adaptación a cambios en el entorno y de reducir el coste computacional. Para abordar la primera tarea de generación de hipótesis, se proponen dos métodos complementarios basados respectivamente en el análisis de la apariencia y la geometría de la escena. Para ello resulta especialmente interesante el uso de un dominio transformado en el que se elimina la perspectiva de la imagen original, puesto que este dominio permite una búsqueda rápida dentro de la imagen y por tanto una generación eficiente de hipótesis de localización de los vehículos. Los candidatos finales se obtienen por medio de un marco colaborativo entre el dominio original y el dominio transformado. Para la verificación de hipótesis se adopta un método de aprendizaje supervisado. Así, se evalúan algunos de los métodos de extracción de características más populares y se proponen nuevos descriptores con arreglo al conocimiento de la apariencia de los vehículos. Para evaluar la efectividad en la tarea de clasificación de estos descriptores, y dado que no existen bases de datos públicas que se adapten al problema descrito, se ha generado una nueva base de datos sobre la que se han realizado pruebas masivas. Finalmente, se presenta una metodología para la fusión de los diferentes clasificadores y se plantea una discusión sobre las combinaciones que ofrecen los mejores resultados. El núcleo del marco propuesto está constituido por un método Bayesiano de seguimiento basado en filtros de partículas. Se plantean contribuciones en los tres elementos fundamentales de estos filtros: el algoritmo de inferencia, el modelo dinámico y el modelo de observación. En concreto, se propone el uso de un método de muestreo basado en MCMC que evita el elevado coste computacional de los filtros de partículas tradicionales y por consiguiente permite que el modelado conjunto de múltiples vehículos sea computacionalmente viable. Por otra parte, el dominio transformado mencionado anteriormente permite la definición de un modelo dinámico de velocidad constante ya que se preserva el movimiento suave de los vehículos en autopistas. Por último, se propone un modelo de observación que integra diferentes características. En particular, además de la apariencia de los vehículos, el modelo tiene en cuenta también toda la información recibida de los bloques de procesamiento previos. El método propuesto se ejecuta en tiempo real en un ordenador de propósito general y da unos resultados sobresalientes en comparación con los métodos tradicionales. ABSTRACT This thesis addresses on-road vehicle detection and tracking with a monocular vision system. This problem has attracted the attention of the automotive industry and the research community as it is the first step for driver assistance and collision avoidance systems and for eventual autonomous driving. Although many effort has been devoted to address it in recent years, no satisfactory solution has yet been devised and thus it is an active research issue. The main challenges for vision-based vehicle detection and tracking are the high variability among vehicles, the dynamically changing background due to camera motion and the real-time processing requirement. In this thesis, a unified approach using statistical methods is presented for vehicle detection and tracking that tackles these issues. The approach is divided into three primary tasks, i.e., vehicle hypothesis generation, hypothesis verification, and vehicle tracking, which are performed sequentially. Nevertheless, the exchange of information between processing blocks is fostered so that the maximum degree of adaptation to changes in the environment can be achieved and the computational cost is alleviated. Two complementary strategies are proposed to address the first task, i.e., hypothesis generation, based respectively on appearance and geometry analysis. To this end, the use of a rectified domain in which the perspective is removed from the original image is especially interesting, as it allows for fast image scanning and coarse hypothesis generation. The final vehicle candidates are produced using a collaborative framework between the original and the rectified domains. A supervised classification strategy is adopted for the verification of the hypothesized vehicle locations. In particular, state-of-the-art methods for feature extraction are evaluated and new descriptors are proposed by exploiting the knowledge on vehicle appearance. Due to the lack of appropriate public databases, a new database is generated and the classification performance of the descriptors is extensively tested on it. Finally, a methodology for the fusion of the different classifiers is presented and the best combinations are discussed. The core of the proposed approach is a Bayesian tracking framework using particle filters. Contributions are made on its three key elements: the inference algorithm, the dynamic model and the observation model. In particular, the use of a Markov chain Monte Carlo method is proposed for sampling, which circumvents the exponential complexity increase of traditional particle filters thus making joint multiple vehicle tracking affordable. On the other hand, the aforementioned rectified domain allows for the definition of a constant-velocity dynamic model since it preserves the smooth motion of vehicles in highways. Finally, a multiple-cue observation model is proposed that not only accounts for vehicle appearance but also integrates the available information from the analysis in the previous blocks. The proposed approach is proven to run near real-time in a general purpose PC and to deliver outstanding results compared to traditional methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many mobile devices embed nowadays inertial sensors. This enables new forms of human-computer interaction through the use of gestures (movements performed with the mobile device) as a way of communication. This paper presents an accelerometer-based gesture recognition system for mobile devices which is able to recognize a collection of 10 different hand gestures. The system was conceived to be light and to operate in a user -independent manner in real time. The recognition system was implemented in a smart phone and evaluated through a collection of user tests, which showed a recognition accuracy similar to other state-of-the art techniques and a lower computational complexity. The system was also used to build a human -robot interface that enables controlling a wheeled robot with the gestures made with the mobile phone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile activity recognition focuses on inferring the current activities of a mobile user by leveraging the sensory data that is available on today’s smart phones. The state of the art in mobile activity recognition uses traditional classification learning techniques. Thus, the learning process typically involves: i) collection of labelled sensory data that is transferred and collated in a centralised repository; ii) model building where the classification model is trained and tested using the collected data; iii) a model deployment stage where the learnt model is deployed on-board a mobile device for identifying activities based on new sensory data. In this paper, we demonstrate the Mobile Activity Recognition System (MARS) where for the first time the model is built and continuously updated on-board the mobile device itself using data stream mining. The advantages of the on-board approach are that it allows model personalisation and increased privacy as the data is not sent to any external site. Furthermore, when the user or its activity profile changes MARS enables promptly adaptation. MARS has been implemented on the Android platform to demonstrate that it can achieve accurate mobile activity recognition. Moreover, we can show in practise that MARS quickly adapts to user profile changes while at the same time being scalable and efficient in terms of consumption of the device resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HELLO protocol or neighborhood discovery is essential in wireless ad hoc networks. It makes the rules for nodes to claim their existence/aliveness. In the presence of node mobility, no fix optimal HELLO frequency and optimal transmission range exist to maintain accurate neighborhood tables while reducing the energy consumption and bandwidth occupation. Thus a Turnover based Frequency and transmission Power Adaptation algorithm (TFPA) is presented in this paper. The method enables nodes in mobile networks to dynamically adjust both their HELLO frequency and transmission range depending on the relative speed. In TFPA, each node monitors its neighborhood table to count new neighbors and calculate the turnover ratio. The relationship between relative speed and turnover ratio is formulated and optimal transmission range is derived according to battery consumption model to minimize the overall transmission energy. By taking advantage of the theoretical analysis, the HELLO frequency is adapted dynamically in conjunction with the transmission range to maintain accurate neighborhood table and to allow important energy savings. The algorithm is simulated and compared to other state-of-the-art algorithms. The experimental results demonstrate that the TFPA algorithm obtains high neighborhood accuracy with low HELLO frequency (at least 11% average reduction) and with the lowest energy consumption. Besides, the TFPA algorithm does not require any additional GPS-like device to estimate the relative speed for each node, hence the hardware cost is reduced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Of the many state-of-the-art methods for cooperative localization in wireless sensor networks (WSN), only very few adapt well to mobile networks. The main problems of the well-known algorithms, based on nonparametric belief propagation (NBP), are the high communication cost and inefficient sampling techniques. Moreover, they either do not use smoothing or just apply it o ine. Therefore, in this article, we propose more flexible and effcient variants of NBP for cooperative localization in mobile networks. In particular, we provide: i) an optional 1-lag smoothing done almost in real-time, ii) a novel low-cost communication protocol based on package approximation and censoring, iii) higher robustness of the standard mixture importance sampling (MIS) technique, and iv) a higher amount of information in the importance densities by using the population Monte Carlo (PMC) approach, or an auxiliary variable. Through extensive simulations, we confirmed that all the proposed techniques outperform the standard NBP method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En entornos hostiles tales como aquellas instalaciones científicas donde la radiación ionizante es el principal peligro, el hecho de reducir las intervenciones humanas mediante el incremento de las operaciones robotizadas está siendo cada vez más de especial interés. CERN, la Organización Europea para la Investigación Nuclear, tiene alrededor de unos 50 km de superficie subterránea donde robots móviles controlador de forma remota podrían ayudar en su funcionamiento, por ejemplo, a la hora de llevar a cabo inspecciones remotas sobre radiación en los diferentes áreas destinados al efecto. No solo es preciso considerar que los robots deben ser capaces de recorrer largas distancias y operar durante largos periodos de tiempo, sino que deben saber desenvolverse en los correspondientes túneles subterráneos, tener en cuenta la presencia de campos electromagnéticos, radiación ionizante, etc. y finalmente, el hecho de que los robots no deben interrumpir el funcionamiento de los aceleradores. El hecho de disponer de un sistema de comunicaciones inalámbrico fiable y robusto es esencial para la correcta ejecución de las misiones que los robots deben afrontar y por supuesto, para evitar tales situaciones en las que es necesario la recuperación manual de los robots al agotarse su energía o al perder el enlace de comunicaciones. El objetivo de esta Tesis es proveer de las directrices y los medios necesarios para reducir el riesgo de fallo en la misión y maximizar las capacidades de los robots móviles inalámbricos los cuales disponen de almacenamiento finito de energía al trabajar en entornos peligrosos donde no se dispone de línea de vista directa. Para ello se proponen y muestran diferentes estrategias y métodos de comunicación inalámbrica. Teniendo esto en cuenta, se presentan a continuación los objetivos de investigación a seguir a lo largo de la Tesis: predecir la cobertura de comunicaciones antes y durante las misiones robotizadas; optimizar la capacidad de red inalámbrica de los robots móviles con respecto a su posición; y mejorar el rango operacional de esta clase de robots. Por su parte, las contribuciones a la Tesis se citan más abajo. El primer conjunto de contribuciones son métodos novedosos para predecir el consumo de energía y la autonomía en la comunicación antes y después de disponer de los robots en el entorno seleccionado. Esto es importante para proporcionar conciencia de la situación del robot y evitar fallos en la misión. El consumo de energía se predice usando una estrategia propuesta la cual usa modelos de consumo provenientes de diferentes componentes en un robot. La predicción para la cobertura de comunicaciones se desarrolla usando un nuevo filtro de RSS (Radio Signal Strength) y técnicas de estimación con la ayuda de Filtros de Kalman. El segundo conjunto de contribuciones son métodos para optimizar el rango de comunicaciones usando novedosas técnicas basadas en muestreo espacial que son robustas frente a ruidos de campos de detección y radio y que proporcionan redundancia. Se emplean métodos de diferencia central finitos para determinar los gradientes 2D RSS y se usa la movilidad del robot para optimizar el rango de comunicaciones y la capacidad de red. Este método también se valida con un caso de estudio centrado en la teleoperación háptica de robots móviles inalámbricos. La tercera contribución es un algoritmo robusto y estocástico descentralizado para la optimización de la posición al considerar múltiples robots autónomos usados principalmente para extender el rango de comunicaciones desde la estación de control al robot que está desarrollando la tarea. Todos los métodos y algoritmos propuestos se verifican y validan usando simulaciones y experimentos de campo con variedad de robots móviles disponibles en CERN. En resumen, esta Tesis ofrece métodos novedosos y demuestra su uso para: predecir RSS; optimizar la posición del robot; extender el rango de las comunicaciones inalámbricas; y mejorar las capacidades de red de los robots móviles inalámbricos para su uso en aplicaciones dentro de entornos peligrosos, que como ya se mencionó anteriormente, se destacan las instalaciones científicas con emisión de radiación ionizante. En otros términos, se ha desarrollado un conjunto de herramientas para mejorar, facilitar y hacer más seguras las misiones de los robots en entornos hostiles. Esta Tesis demuestra tanto en teoría como en práctica que los robots móviles pueden mejorar la calidad de las comunicaciones inalámbricas mediante la profundización en el estudio de su movilidad para optimizar dinámicamente sus posiciones y mantener conectividad incluso cuando no existe línea de vista. Los métodos desarrollados en la Tesis son especialmente adecuados para su fácil integración en robots móviles y pueden ser aplicados directamente en la capa de aplicación de la red inalámbrica. ABSTRACT In hostile environments such as in scientific facilities where ionising radiation is a dominant hazard, reducing human interventions by increasing robotic operations are desirable. CERN, the European Organization for Nuclear Research, has around 50 km of underground scientific facilities, where wireless mobile robots could help in the operation of the accelerator complex, e.g. in conducting remote inspections and radiation surveys in different areas. The main challenges to be considered here are not only that the robots should be able to go over long distances and operate for relatively long periods, but also the underground tunnel environment, the possible presence of electromagnetic fields, radiation effects, and the fact that the robots shall in no way interrupt the operation of the accelerators. Having a reliable and robust wireless communication system is essential for successful execution of such robotic missions and to avoid situations of manual recovery of the robots in the event that the robot runs out of energy or when the robot loses its communication link. The goal of this thesis is to provide means to reduce risk of mission failure and maximise mission capabilities of wireless mobile robots with finite energy storage capacity working in a radiation environment with non-line-of-sight (NLOS) communications by employing enhanced wireless communication methods. Towards this goal, the following research objectives are addressed in this thesis: predict the communication range before and during robotic missions; optimise and enhance wireless communication qualities of mobile robots by using robot mobility and employing multi-robot network. This thesis provides introductory information on the infrastructures where mobile robots will need to operate, the tasks to be carried out by mobile robots and the problems encountered in these environments. The reporting of research work carried out to improve wireless communication comprises an introduction to the relevant radio signal propagation theory and technology followed by explanation of the research in the following stages: An analysis of the wireless communication requirements for mobile robot for different tasks in a selection of CERN facilities; predictions of energy and communication autonomies (in terms of distance and time) to reduce risk of energy and communication related failures during missions; autonomous navigation of a mobile robot to find zone(s) of maximum radio signal strength to improve communication coverage area; and autonomous navigation of one or more mobile robots acting as mobile wireless relay (repeater) points in order to provide a tethered wireless connection to a teleoperated mobile robot carrying out inspection or radiation monitoring activities in a challenging radio environment. The specific contributions of this thesis are outlined below. The first sets of contributions are novel methods for predicting the energy autonomy and communication range(s) before and after deployment of the mobile robots in the intended environments. This is important in order to provide situational awareness and avoid mission failures. The energy consumption is predicted by using power consumption models of different components in a mobile robot. This energy prediction model will pave the way for choosing energy-efficient wireless communication strategies. The communication range prediction is performed using radio signal propagation models and applies radio signal strength (RSS) filtering and estimation techniques with the help of Kalman filters and Gaussian process models. The second set of contributions are methods to optimise the wireless communication qualities by using novel spatial sampling based techniques that are robust to sensing and radio field noises and provide redundancy features. Central finite difference (CFD) methods are employed to determine the 2-D RSS gradients and use robot mobility to optimise the communication quality and the network throughput. This method is also validated with a case study application involving superior haptic teleoperation of wireless mobile robots where an operator from a remote location can smoothly navigate a mobile robot in an environment with low-wireless signals. The third contribution is a robust stochastic position optimisation algorithm for multiple autonomous relay robots which are used for wireless tethering of radio signals and thereby to enhance the wireless communication qualities. All the proposed methods and algorithms are verified and validated using simulations and field experiments with a variety of mobile robots available at CERN. In summary, this thesis offers novel methods and demonstrates their use to predict energy autonomy and wireless communication range, optimise robots position to improve communication quality and enhance communication range and wireless network qualities of mobile robots for use in applications in hostile environmental characteristics such as scientific facilities emitting ionising radiations. In simpler terms, a set of tools are developed in this thesis for improving, easing and making safer robotic missions in hostile environments. This thesis validates both in theory and experiments that mobile robots can improve wireless communication quality by exploiting robots mobility to dynamically optimise their positions and maintain connectivity even when the (radio signal) environment possess non-line-of-sight characteristics. The methods developed in this thesis are well-suited for easier integration in mobile robots and can be applied directly at the application layer of the wireless network. The results of the proposed methods have outperformed other comparable state-of-the-art methods.