8 resultados para mises
em Universidad Politécnica de Madrid
Resumo:
In this article we study the univariate and bivariate truncated von Mises distribution, as a generalization of the von Mises distribution (\cite{jupp1989}), (\cite{mardia2000directional}). This implies the addition of two or four new truncation parameters in the univariate and, bivariate cases, respectively. The results include the definition, properties of the distribution and maximum likelihood estimators for the univariate and bivariate cases. Additionally, the analysis of the bivariate case shows how the conditional distribution is a truncated von Mises distribution, whereas the marginal distribution that generalizes the distribution introduced in \cite{repe}. From the viewpoint of applications, we test the distribution with simulated data, as well as with data regarding leaf inclination angles (\cite{safari}) and dihedral angles in protein chains (\cite{prote}). This research aims to assert this probability distribution as a potential option for modelling or simulating any kind of phenomena where circular distributions are applicable.\par
Resumo:
We study the dynamic response of a wind turbine structure subjected to theoretical seismic motions, taking into account the rotational component of ground shaking. Models are generated for a shallow moderate crustal earthquake in the Madrid Region (Spain). Synthetic translational and rotational time histories are computed using the Discrete Wavenumber Method, assuming a point source and a horizontal layered earth structure. These are used to analyze the dynamic response of a wind turbine, represented by a simple finite element model. Von Mises stress values at different heights of the tower are used to study the dynamical structural response to a set of synthetic ground motion time histories
Resumo:
The failure locus, the characteristics of the stress–strain curve and the damage localization patterns were analyzed in a polypropylene nonwoven fabric under in-plane biaxial deformation. The analysis was carried out by means of a homogenization model developed within the context of the finite element method. It provides the constitutive response for a mesodomain of the fabric corresponding to the area associated to a finite element and takes into account the main deformation and damage mechanisms experimentally observed. It was found that the failure locus in the stress space was accurately predicted by the Von Mises criterion and failure took place by the localization of damage into a crack perpendicular to the main loading axis.
Resumo:
The pattern of damage localization and fracture under uniaxial and biaxial tension was studied in glass–fiber nonwoven felts. The analyses were carried out within the framework of the finite-element simulation of plain and notched specimens in which the microstructure of the felt, made up of fiber bundles connected at the cross point through an organic binder, was explicitly represented. Following previous experimental observations, fracture by interbundle decohesion and energy dissipation by frictional sliding between the bundles were included in the model. It was found that the failure path in these materials was controlled by the maximum applied normal stress, regardless of the loading path, and that the failure locus under biaxial tension was well represented by the von Mises failure criteria. The notch sensitivity of the nonwoven felts was limited and the presence of a notch did not modify the failure path.
Resumo:
Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.
Resumo:
This paper includes the experimental study, analysis, redesign and subsequent test of the parts of a closed circuit, low speed wind tunnel which are relevant in terms of total pressure loss. The objective is to lower the energy consumption of this system for given conditions in test chamber, so as to reduce the operational costs. In order to achieve this objective, several tasks were performed as the text shows in its different parts. For these tasks, the ETSIAE wind tunnel was used, although the results of this work can be extrapolated to any wind tunnel with the same characteristics. Part II presents a theoretical previous study of the general running of a closed circuit, low speed wind tunnel, as well as the followed procedure to conduct experimental tests for obtaining the total pressure loss in its parts. Results from these tests and their analysis are included in this part. In part III, the analysis of the influence of corner 1 on the pressure loss takes place. As it is said in this part, corner 1 has great importance in the total pressure loss of the wind tunnel. Therefore, it is the first part that should be modified in order to improve the performances of the wind tunnel. During part IV, an optimised guide vane is designed in order to reduce the pressure loss in corner 1 of the wind tunnel. Software MISES is used to achieve this goal by means of selecting the optimum guide vane. In order to introduce the new guide vane in wind tunnels with affordable costs, the easily constructable criterion is kept during design. For this reason, the guide vane will consist of simple aerodynamic contours. Part V includes some possible improvements for the proposed guide vane, in order to evaluate if there is room for improvement in its design. Finally, part VI includes the tests that were conducted in the wind tunnel with the new guide vane cascade and the analysis of their results, in order to asses whether the proposed design fulfills the requirement of lowering the total pressure loss in the wind tunnel. Part VII gathers the main ideas resulting from the whole work.
Resumo:
Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is well known that pyramidal cell branching structure differs in the various cortical areas, the principles that determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of intracellularly injected cortical pyramidal cells in seven different cortical regions of the frontal, parietal, and occipital cortex of the mouse. We found that, despite the differences in the structure of the pyramidal cells in these distinct functional and cytoarchitectonic cortical areas, there are common design principles that govern the geometry of dendritic branching angles of pyramidal cells in all cortical areas.
Resumo:
El funcionamiento interno del cerebro es todavía hoy en día un misterio, siendo su comprensión uno de los principales desafíos a los que se enfrenta la ciencia moderna. El córtex cerebral es el área del cerebro donde tienen lugar los procesos cerebrales de más alto nivel, cómo la imaginación, el juicio o el pensamiento abstracto. Las neuronas piramidales, un tipo específico de neurona, suponen cerca del 80% de los cerca de los 10.000 millones de que componen el córtex cerebral, haciendo de ellas un objetivo principal en el estudio del funcionamiento del cerebro. La morfología neuronal, y más específicamente la morfología dendrítica, determina cómo estas procesan la información y los patrones de conexión entre neuronas, siendo los modelos computacionales herramientas imprescindibles para el estudio de su rol en el funcionamiento del cerebro. En este trabajo hemos creado un modelo computacional, con más de 50 variables relativas a la morfología dendrítica, capaz de simular el crecimiento de arborizaciones dendríticas basales completas a partir de reconstrucciones de neuronas piramidales reales, abarcando desde el número de dendritas hasta el crecimiento los los árboles dendríticos. A diferencia de los trabajos anteriores, nuestro modelo basado en redes Bayesianas contempla la arborización dendrítica en su conjunto, teniendo en cuenta las interacciones entre dendritas y detectando de forma automática las relaciones entre las variables morfológicas que caracterizan la arborización. Además, el análisis de las redes Bayesianas puede ayudar a identificar relaciones hasta ahora desconocidas entre variables morfológicas. Motivado por el estudio de la orientación de las dendritas basales, en este trabajo se introduce una regularización L1 generalizada, aplicada al aprendizaje de la distribución von Mises multivariante, una de las principales distribuciones de probabilidad direccional multivariante. También se propone una distancia circular multivariante que puede utilizarse para estimar la divergencia de Kullback-Leibler entre dos muestras de datos circulares. Comparamos los modelos con y sin regularizaci ón en el estudio de la orientación de la dendritas basales en neuronas humanas, comprobando que, en general, el modelo regularizado obtiene mejores resultados. El muestreo, ajuste y representación de la distribución von Mises multivariante se implementa en un nuevo paquete de R denominado mvCircular.---ABSTRACT---The inner workings of the brain are, as of today, a mystery. To understand the brain is one of the main challenges faced by current science. The cerebral cortex is the region of the brain where all superior brain processes, like imagination, judge and abstract reasoning take place. Pyramidal neurons, a specific type of neurons, constitute approximately the 80% of the more than 10.000 million neurons that compound the cerebral cortex. It makes the study of the pyramidal neurons crucial in order to understand how the brain works. Neuron morphology, and specifically the dendritic morphology, determines how the information is processed in the neurons, as well as the connection patterns among neurons. Computational models are one of the main tools for studying dendritic morphology and its role in the brain function. We have built a computational model that contains more than 50 morphological variables of the dendritic arborizations. This model is able to simulate the growth of complete dendritic arborizations from real neuron reconstructions, starting with the number of basal dendrites, and ending modeling the growth of dendritic trees. One of the main diferences between our approach, mainly based on the use of Bayesian networks, and other models in the state of the art is that we model the whole dendritic arborization instead of focusing on individual trees, which makes us able to take into account the interactions between dendrites and to automatically detect relationships between the morphologic variables that characterize the arborization. Moreover, the posterior analysis of the relationships in the model can help to identify new relations between morphological variables. Motivated by the study of the basal dendrites orientation, a generalized L1 regularization applied to the multivariate von Mises distribution, one of the most used distributions in multivariate directional statistics, is also introduced in this work. We also propose a circular multivariate distance that can be used to estimate the Kullback-Leibler divergence between two circular data samples. We compare the regularized and unregularized models on basal dendrites orientation of human neurons and prove that regularized model achieves better results than non regularized von Mises model. Sampling, fitting and plotting functions for the multivariate von Mises are implemented in a new R packaged called mvCircular.