3 resultados para minimal spanning tree
em Universidad Politécnica de Madrid
Resumo:
Finding the degree-constrained minimum spanning tree (DCMST) of a graph is a widely studied NP-hard problem. One of its most important applications is network design. Here we deal with a new variant of the DCMST problem, which consists of finding not only the degree- but also the role-constrained minimum spanning tree (DRCMST), i.e., we add constraints to restrict the role of the nodes in the tree to root, intermediate or leaf node. Furthermore, we do not limit the number of root nodes to one, thereby, generally, building a forest of DRCMSTs. The modeling of network design problems can benefit from the possibility of generating more than one tree and determining the role of the nodes in the network. We propose a novel permutation-based representation to encode these forests. In this new representation, one permutation simultaneously encodes all the trees to be built. We simulate a wide variety of DRCMST problems which we optimize using eight different evolutionary computation algorithms encoding individuals of the population using the proposed representation. The algorithms we use are: estimation of distribution algorithm, generational genetic algorithm, steady-state genetic algorithm, covariance matrix adaptation evolution strategy, differential evolution, elitist evolution strategy, non-elitist evolution strategy and particle swarm optimization. The best results are for the estimation of distribution algorithms and both types of genetic algorithms, although the genetic algorithms are significantly faster.
Resumo:
Sampling a network with a given probability distribution has been identified as a useful operation. In this paper we propose distributed algorithms for sampling networks, so that nodes are selected by a special node, called the source, with a given probability distribution. All these algorithms are based on a new class of random walks, that we call Random Centrifugal Walks (RCW). A RCW is a random walk that starts at the source and always moves away from it. Firstly, an algorithm to sample any connected network using RCW is proposed. The algorithm assumes that each node has a weight, so that the sampling process must select a node with a probability proportional to its weight. This algorithm requires a preprocessing phase before the sampling of nodes. In particular, a minimum diameter spanning tree (MDST) is created in the network, and then nodes weights are efficiently aggregated using the tree. The good news are that the preprocessing is done only once, regardless of the number of sources and the number of samples taken from the network. After that, every sample is done with a RCW whose length is bounded by the network diameter. Secondly, RCW algorithms that do not require preprocessing are proposed for grids and networks with regular concentric connectivity, for the case when the probability of selecting a node is a function of its distance to the source. The key features of the RCW algorithms (unlike previous Markovian approaches) are that (1) they do not need to warm-up (stabilize), (2) the sampling always finishes in a number of hops bounded by the network diameter, and (3) it selects a node with the exact probability distribution.
Resumo:
Encontrar el árbol de expansión mínimo con restricción de grado de un grafo (DCMST por sus siglas en inglés) es un problema NP-complejo ampliamente estudiado. Una de sus aplicaciones más importantes es el dise~no de redes. Aquí nosotros tratamos una nueva variante del problema DCMST, que consiste en encontrar el árbol de expansión mínimo no solo con restricciones de grado, sino también con restricciones de rol (DRCMST), es decir, a~nadimos restricciones para restringir el rol que los nodos tienen en el árbol. Estos roles pueden ser nodo raíz, nodo intermedio o nodo hoja. Por otra parte, no limitamos el número de nodos raíz a uno, por lo que, en general, construiremos bosques de DRCMSTs. El modelado en los problemas de dise~no de redes puede beneficiarse de la posibilidad de generar más de un árbol y determinar el rol de los nodos en la red. Proponemos una nueva representación basada en permutaciones para codificar los bosques de DRCMSTs. En esta nueva representación, una permutación codifica simultáneamente todos los árboles que se construirán. Nosotros simulamos una amplia variedad de problemas DRCMST que optimizamos utilizando ocho algoritmos de computación evolutiva diferentes que codifican los individuos de la población utilizando la representación propuesta. Los algoritmos que utilizamos son: algoritmo de estimación de distribuciones (EDA), algoritmo genético generacional (gGA), algoritmo genético de estado estacionario (ssGA), estrategia evolutiva basada en la matriz de covarianzas (CMAES), evolución diferencial (DE), estrategia evolutiva elitista (ElitistES), estrategia evolutiva no elitista (NonElitistES) y optimización por enjambre de partículas (PSO). Los mejores resultados fueron para el algoritmo de estimación de distribuciones utilizado y ambos tipos de algoritmos genéticos, aunque los algoritmos genéticos fueron significativamente más rápidos.---ABSTRACT---Finding the degree-constrained minimum spanning tree (DCMST) of a graph is a widely studied NP-hard problem. One of its most important applications is network design. Here we deal with a new variant of the DCMST problem, which consists of finding not only the degree- but also the role-constrained minimum spanning tree (DRCMST), i.e., we add constraints to restrict the role of the nodes in the tree to root, intermediate or leaf node. Furthermore, we do not limit the number of root nodes to one, thereby, generally, building a forest of DRCMSTs. The modeling of network design problems can benefit from the possibility of generating more than one tree and determining the role of the nodes in the network. We propose a novel permutation-based representation to encode the forest of DRCMSTs. In this new representation, one permutation simultaneously encodes all the trees to be built. We simulate a wide variety of DRCMST problems which we optimize using eight diferent evolutionary computation algorithms encoding individuals of the population using the proposed representation. The algorithms we use are: estimation of distribution algorithm (EDA), generational genetic algorithm (gGA), steady-state genetic algorithm (ssGA), covariance matrix adaptation evolution strategy (CMAES), diferential evolution (DE), elitist evolution strategy (ElististES), non-elitist evolution strategy (NonElististES) and particle swarm optimization (PSO). The best results are for the estimation of distribution algorithm and both types of genetic algorithms, although the genetic algorithms are significantly faster. iv