12 resultados para methodist mission
em Universidad Politécnica de Madrid
Resumo:
Remote sensing (RS) with aerial robots is becoming more usual in every day time in Precision Agriculture (PA) practices, do to their advantages over conventional methods. Usually, available commercial platforms providing off-the-shelf waypoint navigation are adopted to perform visual surveys over crop fields, with the purpose to acquire specific image samples. The way in which a waypoint list is computed and dispatched to the aerial robot when mapping non empty agricultural workspaces has not been yet discussed. In this paper we propose an offline mission planner approach that computes an efficient coverage path subject to some constraints by decomposing the environment approximately into cells. Therefore, the aim of this work is contributing with a feasible waypoints-based tool to support PA practices
Resumo:
A two-stage mission to place a spacecraft (SC) below the Jovian radiation belts, using a spinning bare tether with plasma contactors at both ends to provide propulsion and power,is proposed. Capture by Lorentz drag on the tether, at the periapsis of a barely hyperbolic equatorial orbit, is followed by a sequence of orbits at near-constant periapsis, drag finally bringing the SC down to a circular orbit below the halo ring. Although increasing both tether heating and bowing, retrograde motion can substantially reduce accumulated dose as compared with prograde motion, at equal tether-to-SC mass ratio. In the second stage,the tether is cut to a segment one order of magnitude smaller, with a single plasma contactor, making the SC to slowly spiral inward over severalmonths while generating large onboard power, which would allow multiple scientific applications, including in situ study of Jovian grains, auroral sounding of upper atmosphere, and space- and time-resolved observations of surface and subsurface.
Resumo:
We discuss experiences gained by porting a Software Validation Facility (SVF) and a satellite Central Software (CSW) to a platform with support for Time and Space Partitioning (TSP). The SVF and CSW are part of the EagleEye Reference mission of the European Space Agency (ESA). As a reference mission, EagleEye is a perfect candidate to evaluate practical aspects of developing satellite CSW for and on TSP platforms. The specific TSP platform we used consists of a simulate D LEON3 CPU controlled by the XtratuM separation micro-kernel. On top of this, we run five separate partitions. Each partition ru n s its own real-time operating system or Ada run-time kernel, which in turn are running the application software of the CSW. We describe issues related to partitioning; inter-partition communication; scheduling; I/O; and fault-detection, isolation, and recovery (FDIR)
Resumo:
A Wearable Power System (WPS) is a portable power source utilized primarily to power the modern soldier’s electronic equipment. Such a system has to satisfy output power demands in the range of 20 W...200 W, specified as a 4-day mission profile and has a weight limit of 4 kg. To meet these demands, an optimization of a WPS, comprising an internal combustion (IC) engine, permanent magnetic three-phase electrical motor/generator, inverter, Li-batteries, DC-DC converters, and controller, is performed in this paper. The mechanical energy extracted from the fuel by IC engine is transferred to the generator that is used to recharge the battery and provide the power to the electrical output load. The main objectives are to select the engine, fuel and battery type, to match the weight of fuel and the number of battery cells, to find the optimal working point of engine and to minimize the system weight. To provide the second output voltage level of 14 VDC, a separate DC-DC converter is connected between the battery and the load, and optimized for the specified mission profile. A prototype of the WPS based on the optimization presented in the paper results in a total system weight of 3.9 kg and fulfils the mission profile.
Resumo:
An electrodynamic bare tether is shown to allow carrying out scientific observations very close to Jupiter, for exploration of its surface and subsurface, and ionospheric and atmospheric in-situ measurements. Starting at a circular equatorial orbit of radius about 1.3/1.4 times the Jovian radius, continuous propellantless Lorentz drag on a thin-tape tether in the 1-5 km length range would make a spacecraft many times as heavy as the tape slowly spiral in, over a period of many months, while generating power at a load plugged in the tether circuit for powering instruments in science data acquisition and transmission. Lying under the Jovian radiation belts, the tape would avoid the most severe problem facing tethers in Jupiter, which are capable of producing both power and propulsion but, operating slowly, could otherwise accumulate too high a radiation dose . The tether would be made to spin in its orbit to keep taut; how to balance the Lorentz torque is discussed. Constraints on heating and bowing are also discussed, comparing conditions for prograde versus retrograde orbits. The system adapts well to the moderate changes in plasma density and motional electric field through the limited radial range in their steep gradients near Jupiter.
Resumo:
The International Aerial Robotics Competition (IARC) is an important event where teams from universities design flying autonomous vehicles to overcome the last challenges in the field. The goal of the Seventh Mission proposed by the IARC is to guide several mobile ground robots to a target area. The scenario is complex and not determinist due to the random behavior of the ground robots movement. The UAV must select efficient strategies to complete the mission. The goal of this work has been evaluating different alternative mission planning strategies of a UAV for this competition. The Mission Planner component is in charge of taking the UAV decisions. Different strategies have been developed and evaluated for the component, achieving a better performance Mission Planner and valuable knowledge about the mission. For this purpose, it was necessary to develop a simulator to evaluate the different strategies. The simulator was built as an improvement of an existing previous version.
Resumo:
El objetivo de este proyecto es recoger y explicar el conjunto de tareas realizadas durante el proceso de colaboración llevado a cabo en el Instituto de Microgravedad “Ignacio Da Riva” durante el curso académico 2014/2015, las cuales han conformado las prácticas externas cursadas en la titulación de Grado en Ingeniería Aeroespacial, y el Trabajo de Fin de Grado de la misma titulación. En este documento se pretende,además, poner de manifiesto la rigurosidad con la que se trabaja en el ámbito espacial y la importancia de los protocolos y procedimientos para asegurar un resultado adecuado en los trabajos realizados. Una parte importante del proyecto detalla los procesos de monitorización y mantenimiento de la batería del satélite universitario UPMSat-2 cuyo lanzamiento está previsto para el año próximo y el cual será el segundo satélite del mundo en incorporar una batería de Ión-Litio.
Resumo:
El presente proyecto se ha realizado durante las prácticas curriculares que han tenido lugar en el Instituto Universitario de Microgravedad “Ignacio Da Riva” (IDR/UPM). A lo largo de estas prácticas se han llevado a cabo trabajos en diversos campos, todos relacionados con el UPMSat-2, desde el subsistema de potencia (placas solares y baterías) hasta el desarrollo de módulos para la Sala de Diseño Concurrente (Concurrent Design Facility, CDF). En la realización de las mismas se ha trabajado en equipo, junto con otros dos alumnos. El objetivo del proyecto es recopilar las tareas realizadas, proporcionando el desarrollo teórico necesario para llevar a cabo todas ellas. Al ser un trabajo con varias partes claramente diferenciadas, se ha optado por comenzar con unas páginas dedicadas a las misiones espaciales. A continuación el trabajo se adentra en el subsistema de potencia de un satélite, particularizando para el UPMSat-2. Finalmente, se proporciona la teoría necesaria para el desarrollo del módulo de misión de la CDF del IDR/UPM, software que se ha desarrollado y tiene reservado un espacio al final, en el cual se describe el programa y se realizan comparaciones de los resultados que proporciona frente a casos reales.
Resumo:
El objetivo de este trabajo de fin de grado es la exposición de los resultados y conclusiones, fruto de las tareas desarrolladas durante las practicas curriculares en el Instituto Universitario de Microgravedad “Ignacio Da Riva” (IDR/UPM) el presente curso académico. La estructura del trabajo se compone de dos bloques diferenciados entre sí: el seguimiento de una batería y el desarrollo de un módulo para una CDF.
Resumo:
Our mission consists in 4 key objectives: Quantify the number of sunspots during the solar maximum, and also characterize their activity and magnetism. Demonstrate the reliability of a mission in LEO orbit, for an effective solar observation. Technology demonstrator: we will take on board an experiment: the PTF (Polymer Filter test in flight ), associated with visible cameras. Investigation of the potential for exploitation of ground space market through the sale of images taken in flight.
Resumo:
De-orbiting satellites at end of mission would prevent generation of new space debris. A proposed de-orbit technology involves a bare conductive tape-tether, which uses neither propellant nor power supply while generating power for on-board use during de-orbiting. The present work shows how to select tape dimensions for a generic mission so as to satisfy requirements of very small tether-to-satellite mass ratio mt/MS and probability Nf of tether cut by small debris, while keeping de-orbit time tf short and product tf ×× tether length low to reduce maneuvers in avoiding collisions with large debris. Design is here discussed for particular missions (initial orbit of 720 km altitude and 63° and 92° inclinations, and 3 disparate MS values, 37.5, 375, and 3750 kg), proving it scalable. At mid-inclination and a mass-ratio of a few percent, de-orbit time takes about 2 weeks and Nf is a small fraction of 1%, with tape dimensions ranging from 1 to 6 cm, 10 to 54 μμm, and 2.8 to 8.6 km. Performance drop from middle to high inclination proved moderate: if allowing for twice as large mt/MS, increases are reduced to a factor of 4 in tf and a slight one in Nf, except for multi-ton satellites, somewhat more requiring because efficient orbital-motion-limited electron collection restricts tape-width values, resulting in tape length (slightly) increasing too.
Resumo:
Electrodynamic tape-tethers are shown to allow a cheap, light, fast mission to Jupiter for multiple flybys of moon Europa and close exploration of the Jovian interior. As regards flybys, this mission is similar to the Clipper mission presently considered by NASA, the basic difference (periapsis location) arising from mission-challenge metrics.