14 resultados para message passing

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this thesis is the development of cooperative localization and tracking algorithms using nonparametric message passing techniques. In contrast to the most well-known techniques, the goal is to estimate the posterior probability density function (PDF) of the position of each sensor. This problem can be solved using Bayesian approach, but it is intractable in general case. Nevertheless, the particle-based approximation (via nonparametric representation), and an appropriate factorization of the joint PDFs (using message passing methods), make Bayesian approach acceptable for inference in sensor networks. The well-known method for this problem, nonparametric belief propagation (NBP), can lead to inaccurate beliefs and possible non-convergence in loopy networks. Therefore, we propose four novel algorithms which alleviate these problems: nonparametric generalized belief propagation (NGBP) based on junction tree (NGBP-JT), NGBP based on pseudo-junction tree (NGBP-PJT), NBP based on spanning trees (NBP-ST), and uniformly-reweighted NBP (URW-NBP). We also extend NBP for cooperative localization in mobile networks. In contrast to the previous methods, we use an optional smoothing, provide a novel communication protocol, and increase the efficiency of the sampling techniques. Moreover, we propose novel algorithms for distributed tracking, in which the goal is to track the passive object which cannot locate itself. In particular, we develop distributed particle filtering (DPF) based on three asynchronous belief consensus (BC) algorithms: standard belief consensus (SBC), broadcast gossip (BG), and belief propagation (BP). Finally, the last part of this thesis includes the experimental analysis of some of the proposed algorithms, in which we found that the results based on real measurements are very similar with the results based on theoretical models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tree-reweighted belief propagation is a message passing method that has certain advantages compared to traditional belief propagation (BP). However, it fails to outperform BP in a consistent manner, does not lend itself well to distributed implementation, and has not been applied to distributions with higher-order interactions. We propose a method called uniformly-reweighted belief propagation that mitigates these drawbacks. After having shown in previous works that this method can substantially outperform BP in distributed inference with pairwise interaction models, in this paper we extend it to higher-order interactions and apply it to LDPC decoding, leading performance gains over BP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The set agreement problem states that from n proposed values at most n?1 can be decided. Traditionally, this problem is solved using a failure detector in asynchronous systems where processes may crash but do not recover, where processes have different identities, and where all processes initially know the membership. In this paper we study the set agreement problem and the weakest failure detector L used to solve it in asynchronous message passing systems where processes may crash and recover, with homonyms (i.e., processes may have equal identities) and without a complete initial knowledge of the membership.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The set agreement problem states that from n proposed values at most n-1 can be decided. Traditionally, this problem is solved using a failure detector in asynchronous systems where processes may crash but not recover, where processes have different identities, and where all processes initially know the membership. In this paper we study the set agreement problem and the weakest failure detector L used to solve it in asynchronous message passing systems where processes may crash and recover, with homonyms (i.e., processes may have equal identities) and without a complete initial knowledge of the membership.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Non-parametric belief propagation (NBP) is a well-known message passing method for cooperative localization in wireless networks. However, due to the over-counting problem in the networks with loops, NBP’s convergence is not guaranteed, and its estimates are typically less accurate. One solution for this problem is non-parametric generalized belief propagation based on junction tree. However, this method is intractable in large-scale networks due to the high-complexity of the junction tree formation, and the high-dimensionality of the particles. Therefore, in this article, we propose the non-parametric generalized belief propagation based on pseudo-junction tree (NGBP-PJT). The main difference comparing with the standard method is the formation of pseudo-junction tree, which represents the approximated junction tree based on thin graph. In addition, in order to decrease the number of high-dimensional particles, we use more informative importance density function, and reduce the dimensionality of the messages. As by-product, we also propose NBP based on thin graph (NBP-TG), a cheaper variant of NBP, which runs on the same graph as NGBP-PJT. According to our simulation and experimental results, NGBP-PJT method outperforms NBP and NBP-TG in terms of accuracy, computational, and communication cost in reasonably sized networks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La segmentación de imágenes es un campo importante de la visión computacional y una de las áreas de investigación más activas, con aplicaciones en comprensión de imágenes, detección de objetos, reconocimiento facial, vigilancia de vídeo o procesamiento de imagen médica. La segmentación de imágenes es un problema difícil en general, pero especialmente en entornos científicos y biomédicos, donde las técnicas de adquisición imagen proporcionan imágenes ruidosas. Además, en muchos de estos casos se necesita una precisión casi perfecta. En esta tesis, revisamos y comparamos primero algunas de las técnicas ampliamente usadas para la segmentación de imágenes médicas. Estas técnicas usan clasificadores a nivel de pixel e introducen regularización sobre pares de píxeles que es normalmente insuficiente. Estudiamos las dificultades que presentan para capturar la información de alto nivel sobre los objetos a segmentar. Esta deficiencia da lugar a detecciones erróneas, bordes irregulares, configuraciones con topología errónea y formas inválidas. Para solucionar estos problemas, proponemos un nuevo método de regularización de alto nivel que aprende información topológica y de forma a partir de los datos de entrenamiento de una forma no paramétrica usando potenciales de orden superior. Los potenciales de orden superior se están popularizando en visión por computador, pero la representación exacta de un potencial de orden superior definido sobre muchas variables es computacionalmente inviable. Usamos una representación compacta de los potenciales basada en un conjunto finito de patrones aprendidos de los datos de entrenamiento que, a su vez, depende de las observaciones. Gracias a esta representación, los potenciales de orden superior pueden ser convertidos a potenciales de orden 2 con algunas variables auxiliares añadidas. Experimentos con imágenes reales y sintéticas confirman que nuestro modelo soluciona los errores de aproximaciones más débiles. Incluso con una regularización de alto nivel, una precisión exacta es inalcanzable, y se requeire de edición manual de los resultados de la segmentación automática. La edición manual es tediosa y pesada, y cualquier herramienta de ayuda es muy apreciada. Estas herramientas necesitan ser precisas, pero también lo suficientemente rápidas para ser usadas de forma interactiva. Los contornos activos son una buena solución: son buenos para detecciones precisas de fronteras y, en lugar de buscar una solución global, proporcionan un ajuste fino a resultados que ya existían previamente. Sin embargo, requieren una representación implícita que les permita trabajar con cambios topológicos del contorno, y esto da lugar a ecuaciones en derivadas parciales (EDP) que son costosas de resolver computacionalmente y pueden presentar problemas de estabilidad numérica. Presentamos una aproximación morfológica a la evolución de contornos basada en un nuevo operador morfológico de curvatura que es válido para superficies de cualquier dimensión. Aproximamos la solución numérica de la EDP de la evolución de contorno mediante la aplicación sucesiva de un conjunto de operadores morfológicos aplicados sobre una función de conjuntos de nivel. Estos operadores son muy rápidos, no sufren de problemas de estabilidad numérica y no degradan la función de los conjuntos de nivel, de modo que no hay necesidad de reinicializarlo. Además, su implementación es mucho más sencilla que la de las EDP, ya que no requieren usar sofisticados algoritmos numéricos. Desde un punto de vista teórico, profundizamos en las conexiones entre operadores morfológicos y diferenciales, e introducimos nuevos resultados en este área. Validamos nuestra aproximación proporcionando una implementación morfológica de los contornos geodésicos activos, los contornos activos sin bordes, y los turbopíxeles. En los experimentos realizados, las implementaciones morfológicas convergen a soluciones equivalentes a aquéllas logradas mediante soluciones numéricas tradicionales, pero con ganancias significativas en simplicidad, velocidad y estabilidad. ABSTRACT Image segmentation is an important field in computer vision and one of its most active research areas, with applications in image understanding, object detection, face recognition, video surveillance or medical image processing. Image segmentation is a challenging problem in general, but especially in the biological and medical image fields, where the imaging techniques usually produce cluttered and noisy images and near-perfect accuracy is required in many cases. In this thesis we first review and compare some standard techniques widely used for medical image segmentation. These techniques use pixel-wise classifiers and introduce weak pairwise regularization which is insufficient in many cases. We study their difficulties to capture high-level structural information about the objects to segment. This deficiency leads to many erroneous detections, ragged boundaries, incorrect topological configurations and wrong shapes. To deal with these problems, we propose a new regularization method that learns shape and topological information from training data in a nonparametric way using high-order potentials. High-order potentials are becoming increasingly popular in computer vision. However, the exact representation of a general higher order potential defined over many variables is computationally infeasible. We use a compact representation of the potentials based on a finite set of patterns learned fromtraining data that, in turn, depends on the observations. Thanks to this representation, high-order potentials can be converted into pairwise potentials with some added auxiliary variables and minimized with tree-reweighted message passing (TRW) and belief propagation (BP) techniques. Both synthetic and real experiments confirm that our model fixes the errors of weaker approaches. Even with high-level regularization, perfect accuracy is still unattainable, and human editing of the segmentation results is necessary. The manual edition is tedious and cumbersome, and tools that assist the user are greatly appreciated. These tools need to be precise, but also fast enough to be used in real-time. Active contours are a good solution: they are good for precise boundary detection and, instead of finding a global solution, they provide a fine tuning to previously existing results. However, they require an implicit representation to deal with topological changes of the contour, and this leads to PDEs that are computationally costly to solve and may present numerical stability issues. We present a morphological approach to contour evolution based on a new curvature morphological operator valid for surfaces of any dimension. We approximate the numerical solution of the contour evolution PDE by the successive application of a set of morphological operators defined on a binary level-set. These operators are very fast, do not suffer numerical stability issues, and do not degrade the level set function, so there is no need to reinitialize it. Moreover, their implementation is much easier than their PDE counterpart, since they do not require the use of sophisticated numerical algorithms. From a theoretical point of view, we delve into the connections between differential andmorphological operators, and introduce novel results in this area. We validate the approach providing amorphological implementation of the geodesic active contours, the active contours without borders, and turbopixels. In the experiments conducted, the morphological implementations converge to solutions equivalent to those achieved by traditional numerical solutions, but with significant gains in simplicity, speed, and stability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The distributed computing models typically assume every process in the system has a distinct identifier (ID) or each process is programmed differently, which is named as eponymous system. In such kind of distributed systems, the unique ID is helpful to solve problems: it can be incorporated into messages to make them trackable (i.e., to or from which process they are sent) to facilitate the message transmission; several problems (leader election, consensus, etc.) can be solved without the information of network property in priori if processes have unique IDs; messages in the register of one process will not be overwritten by others process if this process announces; it is useful to break the symmetry. Hence, eponymous systems have influenced the distributed computing community significantly either in theory or in practice. However, every thing in the world has its own two sides. The unique ID also has disadvantages: it can leak information of the network(size); processes in the system have no privacy; assign unique ID is costly in bulk-production(e.g, sensors). Hence, homonymous system is appeared. If some processes share the same ID and programmed identically is called homonymous system. Furthermore, if all processes shared the same ID or have no ID is named as anonymous system. In homonymous or anonymous distributed systems, the symmetry problem (i.e., how to distinguish messages sent from which process) is the main obstacle in the design of algorithms. This thesis is aimed to propose different symmetry break methods (e.g., random function, counting technique, etc.) to solve agreement problem. Agreement is a fundamental problem in distributed computing including a family of abstractions. In this thesis, we mainly focus on the design of consensus, set agreement, broadcast algorithms in anonymous and homonymous distributed systems. Firstly, the fault-tolerant broadcast abstraction is studied in anonymous systems with reliable or fair lossy communication channels separately. Two classes of anonymous failure detectors AΘ and AP∗ are proposed, and both of them together with a already proposed failure detector ψ are implemented and used to enrich the system model to implement broadcast abstraction. Then, in the study of the consensus abstraction, it is proved the AΩ′ failure detector class is strictly weaker than AΩ and AΩ′ is implementable. The first implementation of consensus in anonymous asynchronous distributed systems augmented with AΩ′ and where a majority of processes does not crash. Finally, a general consensus problem– k-set agreement is researched and the weakest failure detector L used to solve it, in asynchronous message passing systems where processes may crash and recover, with homonyms (i.e., processes may have equal identities), and without a complete initial knowledge of the membership.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The distributed computing models typically assume every process in the system has a distinct identifier (ID) or each process is programmed differently, which is named as eponymous system. In such kind of distributed systems, the unique ID is helpful to solve problems: it can be incorporated into messages to make them trackable (i.e., to or from which process they are sent) to facilitate the message transmission; several problems (leader election, consensus, etc.) can be solved without the information of network property in priori if processes have unique IDs; messages in the register of one process will not be overwritten by others process if this process announces; it is useful to break the symmetry. Hence, eponymous systems have influenced the distributed computing community significantly either in theory or in practice. However, every thing in the world has its own two sides. The unique ID also has disadvantages: it can leak information of the network(size); processes in the system have no privacy; assign unique ID is costly in bulk-production(e.g, sensors). Hence, homonymous system is appeared. If some processes share the same ID and programmed identically is called homonymous system. Furthermore, if all processes shared the same ID or have no ID is named as anonymous system. In homonymous or anonymous distributed systems, the symmetry problem (i.e., how to distinguish messages sent from which process) is the main obstacle in the design of algorithms. This thesis is aimed to propose different symmetry break methods (e.g., random function, counting technique, etc.) to solve agreement problem. Agreement is a fundamental problem in distributed computing including a family of abstractions. In this thesis, we mainly focus on the design of consensus, set agreement, broadcast algorithms in anonymous and homonymous distributed systems. Firstly, the fault-tolerant broadcast abstraction is studied in anonymous systems with reliable or fair lossy communication channels separately. Two classes of anonymous failure detectors AΘ and AP∗ are proposed, and both of them together with a already proposed failure detector ψ are implemented and used to enrich the system model to implement broadcast abstraction. Then, in the study of the consensus abstraction, it is proved the AΩ′ failure detector class is strictly weaker than AΩ and AΩ′ is implementable. The first implementation of consensus in anonymous asynchronous distributed systems augmented with AΩ′ and where a majority of processes does not crash. Finally, a general consensus problem– k-set agreement is researched and the weakest failure detector L used to solve it, in asynchronous message passing systems where processes may crash and recover, with homonyms (i.e., processes may have equal identities), and without a complete initial knowledge of the membership.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, vehicle-track interaction for a new slab track design, conceived to reduce noise and vibration levels has been analyzed, assessing the derailment risk for trains running on curved track when encountering a broken rail. Two different types of rail fastening systems with different elasticities have been analysed and compared. Numerical methods were used in order to simulate the dynamic behaviour of the train-track interaction. Multibody system (MBS) modelling techniques were combined with techniques based on the finite element method (FEM). MBS modelling was used for modelling the vehicle and FEM for simulating the elastic track. The simulation model was validated by comparing simulated results to experimental data obtained in field testing. During the simulations various safety indices, characteristic of derailment risk, were analysed. The simulations realised at the maximum running velocity of 110 km/h showed a similar behaviour for several track types. When reducing the running speed, the safety indices worsened for both cases. Although the worst behaviour was observed for the track with a greater elasticity, in none of the simulations did a derailment occur when running over the broken rail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vehicle–track interaction for a new resilient slab track designed to reduce noise and vibration levels was analysed, in order to assess the derailment risk on a curved track when encountering a broken rail. Sensitivity of the rail support spacing of the relative position of the rail breakage between two adjacent rail supports and of running speed were analysed for two different elasticities of the rail fastening system. In none of the cases analysed was observed an appreciable difference between either of the elastic systems. As was expected, the most unfavourable situations were those with greater rail support spacing and those with greater distance from the breakage to the nearest rail support, although in none of the simulations performed did a derailment occur when running over the broken rail. When varying the running speed, the most favourable condition was obtained for an intermediate speed, due to the superposition of two antagonistic effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper resumes the results obtained applying various implementations of the direct boundary element method (BEM) to the solution of the Laplace Equation governing the potential flow problem during everyday service manoeuvres of high-speed trains. In particular the results of train passing events at three different speed combinations are presented. Some recommendations are given in order to reduce calculation times which as is demonstrated can be cut down to not exceed reasonable limits even when using nowadays office PCs. Thus the method is shown to be a very valuable tool for the design engineer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In traditional nomadic societies, social life was created around mobile points rekindled in different places each time. After the settled urbanization period, where social life centred on fixed attractions, we are opening a new era, where thanks to technology, we are able to create meeting points on the fly. Contemporary public space for passer-by users will be again based on traces instead of lines, reflecting current reality far more accurately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tradicionalmente, el foco de atención en el desarrollo de una arquitectura software se ha centrado en los componentes, relegando a un segundo plano las formas de interacción entre estos componentes: los conectores. Sin embargo, para que un sistema funcione correctamente es necesario dedicar tanta atención a los conectores como a los componentes. En este trabajo presentamos un estudio sobre la herramienta ArchStudio 3.0. El análisis se ha centrado en las capacidades de dicha herramienta para soportar la comunicación entre componentes mediante paso de mensajes. Sobre dicha herramienta se han realizado correcciones en el código, se han rediseñado algunos de sus elementos para mejorar la eficiencia y se ha diseñado e implementado la política de filtrado C2 conocida como message filtering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, a simple theoretical model of the vehicle induced flow and its effects on traffic sign panels is presented. The model is a continuation of a previous one by Sanz-Andrés and coworkers, now including the flexibility of the panel (and, therefore, the flow effects associated to the motion of the panel). Through the paper an aeroelastic one-degree-of-freedom model is developed and the flow effects are computed from unsteady potential theory. The influence of panel's mechanical properties (mass, damping ratio, and stiffness) in the motion induced forces are numerically analyzed.