12 resultados para measurement equipment
em Universidad Politécnica de Madrid
Resumo:
The contributions of driver behaviour as well as surrounding infrastructure are decisive on pollutant emissions from vehicles in real traffic situations. This article deals with the preliminary study of the interaction between the dynamic variables recorded in a vehicle (driving pattern) and pollutant emissions produced over a given urban route. It has been established a “dynamic performance index”-DPI, which is calculated from some driving pattern parameters, which in turn depends on traffic congestion level and route characteristics, in order to determine whether the driving has been aggressive, normal or calm. Two passenger cars instrumented with a portable activity measurement system -to record dynamic variables- and on-board emission measurement equipment have been used. This study has shown that smooth driving patterns can reduce up to 80% NOX emissions and up to 20% of fuel in the same route
Resumo:
En este proyecto fin de carrera se ha diseñado y construido un equipo de medida automático que permite realizar la medida de la constante de Planck utilizando los principios de Funcionamiento de los diodos LED. El equipo de medida es totalmente automático gracias a la utilización de una placa controladora Arduino MEGA 2560, que se encarga de realizar la iluminación secuencial de cada LED, medir sus tensiones de funcionamiento, y de realizar los cálculos necesarios para hallar la constante de Planck. Todos los datos se muestran por una pantalla LCD de 16 caracteres por 2 lineas. Para comprender el funcionamiento del sistema de medida automático se ha realizado un estudio detallado de cada uno de los sistemas que componen el equipo de medida. Se ha explicado el funcionamiento teórico de los diodos LED y el funcionamiento de los semiconductores. Se ha explicando los diversos tipos de semiconductores que se utilizan para los LED y las modificaciones que se les aplica para mejorar su eficiencia. Para poder comprender en qué consiste la constante de Planck se ha explicado los principios teóricos en que se basa, y se ha realizado una pequeña demostración de su cálculo. Una vez visto todos los principios teóricos se ha pasado a realizar la explicación de cada uno de los grandes bloques que componen el sistema de medida automático. Estos bloques son la placa controladora Arduino, el sistema de iluminación LED, el sistema de control mecánico de LEDs, la pantalla LCD, el sistema de interrupciones y el sistema de alimentación. Para poder observar el espectro de emisión de cada uno de los LED se ha utilizado un analizador de espectros óptico (OSA), el cual ha sido explicado con detenimiento. El código de programación de Arduino ha sido explicado en forma de diagrama de flujo para una mayor facilidad de comprensión. Se ha desarrollado un manual de usuario para facilitar el uso del sistema a cualquier usuario, en el que se ha introducido un ejemplo completo de funcionamiento. ABSTRACT. In this final Project has designed and built an automatic measuring equipment which is able to measure the Planck`s constant using the operation principles of the LEDs. The measuring equipment is fully automated thanks to the use of an Arduino Mega 2560 controller board, which is responsible for conducting sequential illumination of each LED, measure their operating voltages, and perform the necessary calculations of find the Planck constant. All data is displayed by a LCD screen 16 character by 2 lines. To understand the operation of the automatic measuring system has been made a detailed study of each of the systems that make the measurement equipment. It develops the theoretical performance of the LED and the operation of semiconductors. It explains the different types of semiconductors that are used for LEDs and the changes applied to improve efficiency. In order to understand what is the Planck constant has been explained the theoretical principles in which it is based, and a small demonstration of its calculation has been performed. After seeing all the theoretical principles has been made the explanation of each of the main blocks that compose the automatic measuring system. These blocks are the Arduino controller board, LED lighting system, the mechanical control system LEDs, LCD screen, the interrupt system and feeding system. To observe the emission spectrum of each of the LED has been used optical spectrum analyzer (OSA), which has been explained in detail. The Arduino programming code has been explained in flowchart form for an easy understanding. It has developed a manual to facilitate the use of system to any user, which has introduced a complete example of operation.
Resumo:
El proyecto fin de carrera “Sistema Portátil de Medida de Dispositivos Sometidos a Ensayos en Campo” es un proyecto acometido para el desarrollo y evaluación de un sistema de medición portátil y confiable, que permita la realización de mediciones de curvas I-V en campo, en condiciones reales de funcionamiento. Dado que la finalidad de este proyecto fin de carrera es la obtención de un sistema para la realización de mediciones en campo, en la implementación del proyecto se tendrán como requisitos principales de diseño el tamaño, la fuente de alimentación, el peso del sistema, además de la fiabilidad y una relativa precisión en la realización de mediciones. Durante la realización de este proyecto y dados los requerimientos anteriores de portabilidad y fiabilidad, se ha buscado ofrecer una solución de compromiso diseñando un equipamiento que sea realizable, que cumpla con los objetivos anteriores con un coste que no sea elevado y con la característica de que disponga de una facilidad de manejo que permita a cualquier usuario la utilización del mismo. El sistema final diseñado está basado en el dispositivo de adquisición de datos MyDAQ de National Instruments que permite la realización de múltiples tipos de mediciones. En base a este dispositivo de adquisición de datos, se ha diseñado un sistema de medición con una arquitectura que se implementa a través de un ordenador portátil, con un software de medición instalado que recopila e interpreta los datos, y que alimenta y controla al dispositivo a través del puerto USB. El sistema también implementa una carga variable que permite la medición de la curva I-V en iluminación de células o mini-paneles fotovoltaicos. Este diseño permite que para la realización de las mediciones de las curvas I-V en iluminación en campo sólo se requiera conectar el dispositivo de adquisición a un PC portátil con batería y a la carga variable. Aunque este diseño es específico para la medición de células solares se ha implementado de forma que pueda extrapolarse fácilmente a otro tipo de medición de tensión y corriente. Para la comprobación de la precisión del sistema portátil de medidas, durante el proyecto se ha procedido a la comparación de los resultados obtenidos del sistema diseñado con un equipo de caracterización en laboratorio. Dicho sistema de alta exactitud permite cuantificar la degradación real de la célula y establecer una comparación de mediciones con el sistema portátil de medida, ofreciendo resultados satisfactorios en todas las mediciones realizadas y permitiendo concluir la evaluación del sistema portátil como apto para las mediciones de dispositivos en campo. El proceso de evaluación del equipamiento diseñado consistiría en la medida de la curva I-V en laboratorio de un dispositivo fotovoltaico con instrumentación de alta precisión y condiciones controladas de luz y temperatura de un dispositivo, célula o mini-panel. Tras la medida inicial las células se instalarían en campo y se realizaría una caracterización periódica de los dispositivos mediante el sistema portátil de medida, que permitiría evidenciar si en la curva I-V bajo iluminación existe degradación, y en qué zona de la curva. Al finalizar el ensayo o en periodos intermedios se desmontarían los dispositivos para volver a medir la curva I-V con exactitud en laboratorio. Por tanto el sistema portátil de medida, debe permitir evaluar la evolución de la curva I-V en condiciones ambientales similares a obtenidas en medidas anteriores, y a partir de la misma determinar el modo de degradación del dispositivo, no siendo necesaria una elevada precisión de medida para ofrecer resultados exactos de degradación, que sólo podrán medirse en el laboratorio. ABSTRACT. The final degree project "Portable Measurement System For Devices Under Field Tests" is a project undertaken for the development and evaluation of portable and reliable measurement equipment, which allows the realization of I-V curve measurements in field conditions actual operation. Since the purpose of this final project is to obtain a system for conducting field measurements in the implementation of the project will have as main design requirements for size, power supply, system weight, plus reliability and precision relative to the taking of measurements. During the development of this project and given the above requirements portability and reliability, has sought to offer a compromise designing equipment that is achievable, that meets the above objectives with a cost that is not high and the feature that available management facility that allows any user to use it. The final system is designed based on the acquisition device MyDAQ NI data that allows the execution of multiple types of measurements. Based on this data acquisition device, we have designed a measurement system with an architecture that is implemented via a laptop, with measurement software installed that collects and interprets data, and feeds and controls the device through the USB port. The system also implements a variable load which allows measurement of the I-V curve lighting photovoltaic cells. This design allows performing measurements of I-V curves in lighting field is only required to connect the device to purchase a laptop with a battery and variable load. Although this design is specific for the measurement of solar cells has been implemented so that it can easily be extrapolated to other types of measuring voltage and current. To test the accuracy of the portable measurement system during the project has been carried out to compare the results of the designed system, a team of laboratory characterization. This system of high accuracy to quantify the actual degradation of the cell and a comparison of measurements with portable measurement system, providing satisfactory results in all measurements and allowing complete portable system assessment as suitable for measurements of devices field. The evaluation process designed equipment would be far laboratory I-V curve of a photovoltaic device with high precision instrumentation controlled light and temperature of a device, panel or mini-cell conditions. After initial measurement cells settle in a periodic field and device characterization will be achieved through the portable measurement system, which would show whether the I-V curve under illumination degradation exists, and in which area of the curve. At the end of the trial or in interim periods devices to remeasure the I-V curve accurately in laboratory dismount. Therefore the portable measurement system should allow evaluating the evolution of the I-V curve similar to previous measurements obtained in ambient conditions, and from it determine the mode of degradation of the device, not a high measurement accuracy to be necessary to provide degradation accurate results, which can only be measured in the laboratory.
Resumo:
El presente documento, evalúa y analiza el ruido existente en las inmediaciones del CEIS (Centro Estudio, Innovación y Servicios), situado en la carretera Villaviciosa de Odón a Móstoles (M-856) en el Km 1,5. El objetivo es obtener datos de nivel de ruido en función del tiempo para conocer su variabilidad a lo largo de la semana, para promover una intercomparación entre laboratorios con ruido real. La zona que contempla el proyecto tiene variedad de ruido medioambiental: ruido de tráfico rodado, ruido industrial, ruido de instalaciones y ruido de tráfico aéreo. Estas fuentes de ruido pueden presentarse en diversas combinaciones. Para el ruido total existente, se analiza por un lado el ruido específico de la carretera M-856, y por otro lado el ruido residual asociado a sucesos aislados, como el ruido de tráfico aéreo, ruido industrial y de instalaciones. Para el cálculo de los niveles sonoros de la zona se realiza una evaluación del índice de ruido Ld, para el periodo de día, utilizando como herramienta de cálculo el programa CadnaA versión 4.2. Se realiza la validación de los niveles sonoros obtenidos en el CadnaA en las inmediaciones de la carretera Villaviciosa de Odón a Móstoles. Para ello se comparan los niveles obtenidos en el modelo acústico de la zona elaborado mediante CadnaA y los niveles medidos “in-situ”. Una vez obtenidos los niveles sonoros, se calcula la incertidumbre de las medidas ejecutadas “in-situ” en la última jornada de mediciones realizada, correspondientes a niveles de presión sonora continuos equivalente ponderado A (LAeq, 5min) y de las medidas simuladas en CadnaA , teniendo en cuenta las posibles desviaciones ocasionadas por el equipo de medida, condiciones meteorológicas, variaciones del tráfico, metodología de ensayo..... Por último se valoran los datos obtenidos y se evalúa la posibilidad de promover una intercomparación entre laboratorios realizada con el ruido real de tráfico de la zona. ABSTRACT. The next document evaluates the noise in sorrounding areas of CEIS (Centro Estudio, Innovación y Servicios), located in the road from Villaviciosa de Odón to Móstoles (M-856), in 1.5 km. The aim of this project is to get precise information during time to promove an intercomparation between laboratories with real noise. The area included in the project has several environmental noise: traffic noise, industrial noise and air traffic noise. These noise sources can be combined in different ways. The specific noise of the M-856 on one hand, and the residual noise associated with air traffic noise and industrial noise on the other. The calculation tool CadnaA, 4.2 version, simulates sound levels for the day period and the index Ld. The validation of sound levels around the road Villaviciosa de Odon to Móstoles, is made by comparing the obtained levels in the acoustic model and the real measured levels “in situ” . The uncertainty of the measures "in-situ", and the uncertainty of the sound levels simulated in the acoustic model CadnaA, is calculated using the measurements “in situ” (LAeq, 5min) of the last day. For that calculation, is necessary to take into account the deviations resulting from the measurement equipment, weather conditions, traffic variations, test methodology.... Finally the obtained data are evaluated, considering the possibility of promote an intercomparison between laboratories with real traffic noise of the area.
Resumo:
Within the European funded project SOPHIA, a Round Robin measurement on CPV module has been initiated. Seven different test laboratories located in Europe between 48°N and 37°N perform measurements of four SOITEC CPV modules. The modules are electrically characterized with different measurement equipment under various climatic conditions. One pyrheliometer and one spectral sensor based on component cells are shipped together with the modules. This ensures that the irradiance and spectrum, two factors with high impact on CPV module performance, are measured with the identical equipment at each site. The round robin activity is performed in closeco-operation with the IEC TC82 WG7 power rating team in order to support the work on the CPV module power rating draft standard 62670-3. The resultingrated module power outputs at CSOC (Concentrator Standard Operating Conditions) are compared amongst the power rating methods and amongst the test labs. In this manner, a deviation in rated power output between different test labs and power rating methods is determined.
Resumo:
In the frame of the European project SOPHIA a concentrator photovoltaic (CPV) module measurement round robin has been initiated. The round robin includes measurements of four CPV modules at seven different test laboratories located in Europe. IV curves of the modules are measured with different measurement equipment under various climatic conditions. The aim of this activity is to perform at each site a rating of the modules at concentrator standard operating conditions CSOC according to IEC 62670-1. The outcome of the round robin is intended for direct feedback to the current draft standard IEC 62670-3 “Concentrator Photovoltaic (CPV) Performance Testing - Performance Measurements and Power Rating”. The paper discusses initial results from the first three partners that have already finished the measurements up to now.
Resumo:
This paper proposes a method for the identification of different partial discharges (PDs) sources through the analysis of a collection of PD signals acquired with a PD measurement system. This method, robust and sensitive enough to cope with noisy data and external interferences, combines the characterization of each signal from the collection, with a clustering procedure, the CLARA algorithm. Several features are proposed for the characterization of the signals, being the wavelet variances, the frequency estimated with the Prony method, and the energy, the most relevant for the performance of the clustering procedure. The result of the unsupervised classification is a set of clusters each containing those signals which are more similar to each other than to those in other clusters. The analysis of the classification results permits both the identification of different PD sources and the discrimination between original PD signals, reflections, noise and external interferences. The methods and graphical tools detailed in this paper have been coded and published as a contributed package of the R environment under a GNU/GPL license.
Resumo:
Irrigation management in large crop fields is a very important practice. Since the farm management costs and the crop results are directly connected with the environmental moisture, water control optimization is a critical factor for agricultural practices, as well as for the planet sustainability. Usually, the crop humidity is measured through the water stress index (WSI), using imagery acquired from satellites or airplanes. Nevertheless, these tools have a significant cost, lack from availability, and dependability from the weather. Other alternative is to recover to ground tools, such as ground vehicles and even static base stations. However, they have an outstanding impact in the farming process, since they can damage the cultivation and require more human effort. As a possible solution to these issues, a rolling ground robot have been designed and developed, enabling non-invasive measurements within crop fields. This paper addresses the spherical robot system applied to intra-crop moisture measurements. Furthermore, some experiments were carried out in an early stage corn field in order to build a geo-referenced WSI map.
Resumo:
This Master Final Project is intended to show the process developed to the functional and electrical characterization between different devices that use the SpaceWire space communications standard integrated into an evaluation board designed for this purpose. In order to carry out this characterization, firstly, a study to understand the SpaceWire standard is done. After that, another study for the understanding of the demonstration board with its different interfaces and IPs of SpW is done. According to this, it is expected to find out how the SpW devices are structured, especially at FPGA level, and how is the communication between them. Based on the knowledge obtained about SpaceWire and the SpW devices integrated into the evaluation board, the set of measurements and the strategy to validate electrical interoperability between the different devices are defined, as well as to perform functional checks required to ensure its proper understanding. Furthermore, it will let check whether the standard is met and search the limit of operation within a communication system representative of existing equipment in a satellite. Once finished the test plan and implemented on the representative hardware, the board will be considered characterized at SpW level and a report with the conclusions reached about the operation of the SpW interfaces in the board and constraints found will be done. RESUMEN. El presente Trabajo Fin de Máster pretende mostrar el proceso realizado para la caracterización eléctrica y funcional entre distintos dispositivos que utilizan el estándar de comunicaciones espaciales SpaceWire integrados en una tarjeta de evaluación diseñada para tal efecto. Para poder llevar a cabo dicha caracterización, en primer lugar, se realiza un estudio para el conocimiento del estándar SpaceWire. A continuación, se lleva a cabo otro estudio para el conocimiento de la tarjeta de demostración en la que se encuentran los distintos interfaces e IPs de SpW. Con esto último, se pretende conocer como están estructurados los dispositivos SpW, sobre todo a nivel de FPGA, y como se realiza la comunicación entre ellos. En base a los conocimientos adquiridos acerca de SpaceWire y los dispositivos SpW de la tarjeta de evaluación, se definen el conjunto de medidas y la estrategia a seguir para validar eléctricamente la interoperabilidad entre los distintos dispositivos, así como para realizar las comprobaciones funcionales necesarias para asegurar su correcto entendimiento. Además, con ello se podrá comprobar si se cumple el estándar y se podrá también buscar el límite de operación dentro de un sistema de comunicaciones representativo de los equipos existentes en un satélite. Realizado el plan de pruebas y aplicado sobre el hardware representativo se podrá dar por caracterizada la tarjeta a nivel SpW y realizar un informe con las conclusiones alcanzadas acerca del funcionamiento de los interfaces SpW de la tarjeta y las limitaciones encontradas.
Resumo:
The implementation of Internet technologies has led to e-Manufacturing technologies becoming more widely used and to the development of tools for compiling, transforming and synchronising manufacturing data through the Web. In this context, a potential area for development is the extension of virtual manufacturing to performance measurement (PM) processes, a critical area for decision making and implementing improvement actions in manufacturing. This paper proposes a PM information framework to integrate decision support systems in e-Manufacturing. Specifically, the proposed framework offers a homogeneous PM information exchange model that can be applied through decision support in e-Manufacturing environment. Its application improves the necessary interoperability in decision-making data processing tasks. It comprises three sub-systems: a data model, a PM information platform and PM-Web services architecture. A practical example of data exchange for measurement processes in the area of equipment maintenance is shown to demonstrate the utility of the model.
Resumo:
This paper proposes a method for the identification of different partial discharges (PDs) sources through the analysis of a collection of PD signals acquired with a PD measurement system. This method, robust and sensitive enough to cope with noisy data and external interferences, combines the characterization of each signal from the collection, with a clustering procedure, the CLARA algorithm. Several features are proposed for the characterization of the signals, being the wavelet variances, the frequency estimated with the Prony method, and the energy, the most relevant for the performance of the clustering procedure. The result of the unsupervised classification is a set of clusters each containing those signals which are more similar to each other than to those in other clusters. The analysis of the classification results permits both the identification of different PD sources and the discrimination between original PD signals, reflections, noise and external interferences. The methods and graphical tools detailed in this paper have been coded and published as a contributed package of the R environment under a GNU/GPL license.
Resumo:
Both in industry and research, the quality control of micrometric manufactured parts is based on the measurement of parameters whose traceability is sometimes difficult to guarantee. In some of these parts, the confocal microscopy shows great aptitudes to characterize a measurand qualitatively and quantitatively. The confocal microscopy allows the acquisition of 2D and 3D images that are easily manipulated. Nowadays, this equipment is manufactured by many different brands, each of them claiming a resolution probably not in accord to their real performance. The Laser Center (Technical University of Madrid) has a confocal microscope to verify the dimensions of the micro mechanizing in their own research projects. The present study pretends to confirm that the magnitudes obtained are true and reliable. To achieve this, a methodology for confocal microscope calibration is proposed, as well as an experimental phase for dimensionally valuing the equipment by 4 different standard positions, with its seven magnifications and the six objective lenses that the equipment currently has, in the x–y and z axis. From the results the uncertainty will be estimated along with an effect analysis of the different magnifications in each of the objective lenses.