6 resultados para maladie de Parkinson
em Universidad Politécnica de Madrid
Resumo:
Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models recently proposed to deal with multi-dimensional classification problems, where each instance in the data set has to be assigned to more than one class variable. In this paper, we propose a Markov blanket-based approach for learning MBCs from data. Basically, it consists of determining the Markov blanket around each class variable using the HITON algorithm, then specifying the directionality over the MBC subgraphs. Our approach is applied to the prediction problem of the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson’s Disease Questionnaire (PDQ-39) in order to estimate the health-related quality of life of Parkinson’s patients. Fivefold cross-validation experiments were carried out on randomly generated synthetic data sets, Yeast data set, as well as on a real-world Parkinson’s disease data set containing 488 patients. The experimental study, including comparison with additional Bayesian network-based approaches, back propagation for multi-label learning, multi-label k-nearest neighbor, multinomial logistic regression, ordinary least squares, and censored least absolute deviations, shows encouraging results in terms of predictive accuracy as well as the identification of dependence relationships among class and feature variables.
Resumo:
Este trabajo de investigación detalla el diseño y evaluación de un servicio de e-salud cuyo objetivo es mejorar la estimulación y seguimiento de personas con un trastorno cognitivo. Con este fin, se ha desarrollado un protocolo de transferencia de mensajes que facilita la provisión de un servicio telemático para personas afectadas de Parkinson, pudiendo así realizar estimulación cognitiva personalizada, de forma ubicua, mediante un dispositivo fácil de usar como un tablet Android. Asimismo, este servicio permite a los terapeutas adaptar y monitorizar de forma segura la terapia, vía web, beneficiándose así de una mejor calidad en el seguimiento efectivo de cada paciente. El sistema ha sido evaluado satisfactoriamente durante tres meses con 10 pacientes entre 59 y 77 años. La solución resultante es fácilmente integrable con otras terapias complementarias y puede ser adaptada para otros deterioros cognitivos, como el debido a la enfermedad de Alzheimer o el deterioro cognitivo leve.
Resumo:
This paper summarizes the experience and the lessons learned from the European project PERFORM (A sophisticated multi-parametric system FOR the continuous effective assessment and monitoring of motor status in Parkinson's disease and other neurodegenerative diseases). PERFORM is aimed to provide a telehealth system for the remote monitoring of Parkinson's disease patients (PD) at their homes. This paper explains the global experience with PERFORM. It summarizes the technical performance of the system and the feedback received from the patients in terms of usability and wearability.
Resumo:
This paper summarizes the experience and the lessons learned from the European project PERFORM (A sophisticated multi-parametric system FOR the continuous effective assessment and monitoring of motor status in Parkinson s disease and other neurodegenerative diseases). PERFORM is aimed to provide a telehealth system for the remote monitoring of Parkinson s disease patients (PD) at their homes. This paper explains the global experience with PERFORM. It summarizes the technical performance of the system and the feedback received from the patients in terms of usability and wearability.
Resumo:
This paper describes the experimental set up of a system composed by a set of wearable sensors devices for the recording of the motion signals and software algorithms for the signal analysis. This system is able to automatically detect and assess the severity of bradykinesia, tremor, dyskinesia and akinesia motor symptoms. Based on the assessment of the akinesia, the ON-OFF status of the patient is determined for each moment. The assessment performed through the automatic evaluation of the akinesia is compared with the status reported by the patients in their diaries. Preliminary results with a total recording period of 32 hours with two PD patients are presented, where a good correspondence (88.2 +/- 3.7 %) was observed. Best (93.7 por ciento) and worst (87 por ciento) correlation results are illustrated, together with the analysis of the automatic assessment of the akinesia symptom leading to the status determination. The results obtained are promising, and if confirmed with further data, this automatic assessment of PD motor symptoms will lead to a better adjustment of medication dosages and timing, cost savings and an improved quality of life of the patients.
Resumo:
The impact of the Parkinson's disease and its treatment on the patients' health-related quality of life can be estimated either by means of generic measures such as the european quality of Life-5 Dimensions (EQ-5D) or specific measures such as the 8-item Parkinson's disease questionnaire (PDQ-8). In clinical studies, PDQ-8 could be used in detriment of EQ-5D due to the lack of resources, time or clinical interest in generic measures. Nevertheless, PDQ-8 cannot be applied in cost-effectiveness analyses which require generic measures and quantitative utility scores, such as EQ-5D. To deal with this problem, a commonly used solution is the prediction of EQ-5D from PDQ-8. In this paper, we propose a new probabilistic method to predict EQ-5D from PDQ-8 using multi-dimensional Bayesian network classifiers. Our approach is evaluated using five-fold cross-validation experiments carried out on a Parkinson's data set containing 488 patients, and is compared with two additional Bayesian network-based approaches, two commonly used mapping methods namely, ordinary least squares and censored least absolute deviations, and a deterministic model. Experimental results are promising in terms of predictive performance as well as the identification of dependence relationships among EQ-5D and PDQ-8 items that the mapping approaches are unable to detect