5 resultados para longitudinally extensive tranverse myelitis
em Universidad Politécnica de Madrid
Resumo:
The Bienaventurada mine operates a polymetallic Ag-Pb-Zn (Cu, Au) vein system of the low sulphidation epithermal type. Fluid inclusions, FI, are abundant in quartz, sphalerite and adularia. FI petrography demonstrates typical primary growth zoning which occurs frequently in crystalline quartz, and defines the most common primary FI. These are usually very small, but several types of primary, P, and secondary, S, FI Assemblages (FIAs) comprising FI of measurable size (3 to > 100 μm) can also be identified through careful petrographic work. The fluids are aqueous and undersaturated, and no evidence of CO2 was found; the degree of fill is usually high (~70-80 %) in the L-rich inclusions, but extremely low in V-rich inclusions. The measured microthermometric values are very consistent in the FIAs selected; they are for the most part roughly similar in the P and S assemblages: the median is typically ~258ºC for total homogenization temperatures, Th, and -1.5 ºC for ice melting temperatures, Tm (corresponding to 2.57 wt% NaCl eq). The widespread occurrence of L-rich and V-rich FI in the same FIA and the consistent Th values point to an extensive boiling system along the vein. In these conditions, Th equals T of trapping, and the ores are assumed to have been precipitated from an aqueous low salinity boiling fluid, of likely meteoric origin, at some 250-280º C, under ~500 m hydrostatic head.
Resumo:
In recent years a great number of high speed railway bridges have been constructed within the Spanish borders. Due to the demanding high speed trains route's geometrical requirements, bridges frequently show remarkable lengths. This fact is the main reason why railway bridges are overall longer than roadway bridges. In the same line, it is also worth highlighting the importance of high speed trains braking forces compared to vehicles. While vehicles braking forces can be tackled easily, the railway braking forces demand the existence of a fixed-point. It is generally located at abutments where the no-displacements requirement can be more easily achieved. In some other cases the fixed-point is placed in one of the interior columns. As a consequence of these bridges' length and the need of a fixed-point, temperature, creep and shrinkage strains lead to fairly significant deck displacements, which become greater with the distance to the fixed-point. These displacements need to be accommodated by the piers and bearings deformation. Regular elastomeric bearings are not able to allow such displacements and therefore are not suitable for this task. For this reason, the use of sliding PTFE POT bearings has been an extensive practice mainly because they permit sliding with low friction. This is not the only reason of the extensive use of these bearings to high-speed railways bridges. The value of the vertical loads at each bent is significantly higher than in roadway bridges. This is so mainly because the live loads due to trains traffic are much greater than vehicles. Thus, gravel rails foundation represents a non-negligible permanent load at all. All this together increases the value of vertical loads to be withstood. This high vertical load demand discards the use of conventional bearings for excessive compressions. The PTFE POT bearings' higher technology allows to accommodate this level of compression thanks to their design. The previously explained high-speed railway bridge configuration leads to a key fact regarding longitudinal horizontal loads (such as breaking forces) which is the transmission of these loads entirely to the fixed-point alone. Piers do not receive these longitudinal horizontal loads since PTFE POT bearings displayed are longitudinally free-sliding. This means that longitudinal horizontal actions on top of piers will not be forces but imposed displacements. This feature leads to the need to approach these piers design in a different manner that when piers are elastically linked to superstructure, which is the case of elastomeric bearings. In response to the previous, the main goal of this Thesis is to present a Design Method for columns displaying either longitudinally fixed POT bearings or longitudinally free PTFE POT bearings within bridges with fixed-point deck configuration, applicable to railway and road vehicles bridges. The method was developed with the intention to account for all major parameters that play a role in these columns behavior. The long process that has finally led to the method's formulation is rooted in the understanding of these column's behavior. All the assumptions made to elaborate the formulations contained in this method have been made in benefit of conservatives results. The singularity of the analysis of columns with this configuration is due to a combination of different aspects. One of the first steps of this work was to study they of these design aspects and understand the role each plays in the column's response. Among these aspects, special attention was dedicated to the column's own creep due to permanent actions such us rheological deck displacements, and also to the longitudinally guided PTFE POT bearings implications in the design of the column. The result of this study is the Design Method presented in this Thesis, that allows to work out a compliant vertical reinforcement distribution along the column. The design of horizontal reinforcement due to shear forces is not addressed in this Thesis. The method's formulations are meant to be applicable to the greatest number of cases, leaving to the engineer judgement many of the different parameters values. In this regard, this method is a helpful tool for a wide range of cases. The widespread use of European standards in the more recent years, in particular the so-called Eurocodes, has been one of the reasons why this Thesis has been developed in accordance with Eurocodes. Same trend has been followed for the bearings design implications, which are covered by the rather recent European code EN-1337. One of the most relevant aspects that this work has taken from the Eurocodes is the non-linear calculations security format. The biaxial bending simplified approach that shows the Design Method presented in this work also lies on Eurocodes recommendations. The columns under analysis are governed by a set of dimensionless parameters that are presented in this work. The identification of these parameters is a helpful for design purposes for two columns with identical dimensionless parameters may be designed together. The first group of these parameters have to do with the cross-sectional behavior, represented in the bending-curvature diagrams. A second group of parameters define the columns response. Thanks to this identification of the governing dimensionless parameters, it has been possible what has been named as Dimensionless Design Curves, which basically allows to obtain in a reduced time a preliminary vertical reinforcement column distribution. These curves are of little use nowadays, firstly because each family of curves refer to specific values of many different parameters and secondly because the use of computers allows for extremely quick and accurate calculations.
Resumo:
Dynamic measurements will become a standard for bridge monitoring in the near future. This fact will produce an important cost reduction for maintenance. US Administration has a long term intensive research program in order to diminish the estimated current maintenance cost of US$7 billion per year over 20 years. An optimal intervention maintenance program demands a historical dynamical record, as well as an updated mathematical model of the structure to be monitored. In case that a model of the structure is not actually available it is possible to produce it, however this possibility does not exist for missing measurement records from the past. Current acquisition systems to monitor structures can be made more efficient by introducing the following improvements, under development in the Spanish research Project “Low cost bridge health monitoring by ambient vibration tests using wireless sensors”: (a) a complete wireless system to acquire sensor data, (b) a wireless system that permits the localization and the hardware identification of the whole sensor system. The applied localization system has been object of a recent patent, and (c) automatization of the modal identification process, aimed to diminish human intervention. This system is assembled with cheap components and allows the simultaneous use of a large number of sensors at a low placement cost. The engineer’s intervention is limited to the selection of sensor positions, probably based on a preliminary FE analysis. In case of multiple setups, also the position of a number of fixed reference sensors has to be decided. The wireless localization system will obtain the exact coordinates of all these sensors positions. When the selection of optimal positions is difficult, for example because of the lack of a proper FE model, this can be compensated by using a higher number of measuring (also reference) points. The described low cost acquisition system allows the responsible bridge administration to obtain historical dynamic identification records at reasonable costs that will be used in future maintenance programs. Therefore, due to the importance of the baseline monitoring record of a new bridge, a monitoring test just after its construction should be highly recommended, if not compulsory.
Resumo:
The effects of the combined use of long lactation periods (46 days) with alternative cages on the reproductive and growth performance of 104 rabbit does and their litters during five consecutive reproductive cycles were studied. Half of does were housed in conventional polyvalent cages (39 cm×100 cm×30 cm) and the other half in alternative polyvalent cages (39 cm×100 cm×60 cm), with a raised platform. Half of the rabbit does in each type of cage were weaned at 32 and the other half at 46 days after parturition. Longer lactation negatively affected the body weight (P<0.001), fat and energy content (P<0.05) of rabbit does at the end of the lactation period, but this effect decreased with the number of parturitions. Fertility, prolificacy and doe mortality were not affected by lactation length. Late weaning led to higher litter size (by 8.9%) and litter weight (by 11.3%) at the end of growing period (P<0.001) and lower feed conversion ratio per cage during the experimental period (13.5%) than weaning at 32 day (P<0.001). These results were paralleled by lower mortality (12.6 vs. 17.6%; P<0.01) of young rabbits weaned later during the overall experimental period. Differences in performance as a result of different weaning ages were only observed during cycles with worst health status (third and fifth cycles) in which late weaning decreased mortality. Type of cage did not affect doe body weight and body condition, mortality, fertility, prolificacy and litter size during the five reproductive cycles. Nevertheless, at day 21 litter weight and feed conversion ratio between 3 and 21 day were 4.2% higher (P<0.01) and 5.0% lower (P<0.05), respectively, in animals housed in alternative rather than in conventional cages. Alternative cages also led to heavier litters at 59 days (P<0.01). It was concluded that the combined use of longer lactations and cages with higher available surface with a raised platform could be alternatives to improve animal welfare in farmed rabbit.
Resumo:
The effects of the combined use of long lactation periods (46 days) with alternative cages on the reproductive and growth performance of 104 rabbit does and their litters during five consecutive reproductive cycles were studied. Half of does were housed in conven- tional polyvalent cages (39 cm x 100 cm x 30 cm) and the other half in alternative polyvalent cages (39 cm x 100 cm x 60 cm), with a raised platform. Half of the rabbit does in each type of cage were weaned at 32 and the other half at 46 days after parturition. Longer lactation negatively affected the body weight ( P o 0.001), fat and energy content ( P o 0.05) of rabbit does at the end of the lactation period, but this effect decreased with the number of parturitions. Fertility, prolificacy and doe mortality were not affected by lactation length. Late weaning led to higher litter size (by 8.9%) and litter weight (by 11.3%) at the end of growing period ( P o 0.001) and lower feed conversion ratio per cage during the experimental period (13.5%) than weaning at 32 day ( P o 0.001). These results were paralleled by lower mortality (12.6 vs. 17.6%; P o 0.01) of young rabbits weaned later during the overall experimental period. Differences in performance as a result of different weaning ages were only observed during cycles with worst health status (third and fifth cycles) in which late weaning decreased mortality. Type of cage did not affect doe body weight and body condition, mortality, fertility, prolificacy and litter size during the five reproductive cycles. Nevertheless, at day 21 litter weight and feed conversion ratio between 3 and 21 day were 4.2% higher ( P o 0.01) and 5.0% lower ( P o 0.05), respectively, in animals housed in alternative rather than in conventional cages. Alternative cages also led to heavier litters at 59 days ( P o 0.01). It was concluded that the combined use of longer lactations and cages with higher available surface with a raised platform could be alternatives to improve animal welfare in farmed rabbit.