6 resultados para logistic regression analysis

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the question of maximizing classifier accuracy for classifying task-related mental activity from Magnetoencelophalography (MEG) data. We propose the use of different sources of information and introduce an automatic channel selection procedure. To determine an informative set of channels, our approach combines a variety of machine learning algorithms: feature subset selection methods, classifiers based on regularized logistic regression, information fusion, and multiobjective optimization based on probabilistic modeling of the search space. The experimental results show that our proposal is able to improve classification accuracy compared to approaches whose classifiers use only one type of MEG information or for which the set of channels is fixed a priori.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, multiple regression analysis is used to model the top of descent (TOD) location of user-preferred descent trajectories computed by the flight management system (FMS) on over 1000 commercial flights into Melbourne, Australia. In addition to recording TOD, the cruise altitude, final altitude, cruise Mach, descent speed, wind, and engine type were also identified for use as the independent variables in the regression analysis. Both first-order and second-order models are considered, where cross-validation, hypothesis testing, and additional analysis are used to compare models. This identifies the models that should give the smallest errors if used to predict TOD location for new data in the future. A model that is linear in TOD altitude, final altitude, descent speed, and wind gives an estimated standard deviation of 3.9 nmi for TOD location given the trajectory parame- ters, which means about 80% of predictions would have error less than 5 nmi in absolute value. This accuracy is better than demonstrated by other ground automation predictions using kinetic models. Furthermore, this approach would enable online learning of the model. Additional data or further knowledge of algorithms is necessary to conclude definitively that no second-order terms are appropriate. Possible applications of the linear model are described, including enabling arriving aircraft to fly optimized descents computed by the FMS even in congested airspace.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predicting failures in a distributed system based on previous events through logistic regression is a standard approach in literature. This technique is not reliable, though, in two situations: in the prediction of rare events, which do not appear in enough proportion for the algorithm to capture, and in environments where there are too many variables, as logistic regression tends to overfit on this situations; while manually selecting a subset of variables to create the model is error- prone. On this paper, we solve an industrial research case that presented this situation with a combination of elastic net logistic regression, a method that allows us to automatically select useful variables, a process of cross-validation on top of it and the application of a rare events prediction technique to reduce computation time. This process provides two layers of cross- validation that automatically obtain the optimal model complexity and the optimal mode l parameters values, while ensuring even rare events will be correctly predicted with a low amount of training instances. We tested this method against real industrial data, obtaining a total of 60 out of 80 possible models with a 90% average model accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El minuto final de un partido ajustado de baloncesto es un momento crítico que está sujeto a multitud de factores que influyen en su desarrollo. Así, el porcentaje de acierto en los tiros libres durante ese periodo de tiempo va a determinar, en muchas ocasiones, el resultado final del partido. La disminución de rendimiento (drop) en esta faceta de juego en condiciones de presión, puede estar relacionada con múltiples variables propias del contexto deportivo estudiado, como por ejemplo: los segundos restantes de posesión, la situación en el marcador (ir ganando, empatando o perdiendo), la localización del partido (jugar en casa o fuera), la fase de competición (fase regular o eliminatorias) o el nivel del equipo (mejores/peores equipos). Además, las características del jugador que realiza los lanzamientos tienen una gran importancia respecto a su edad y años de experiencia para afrontar los momentos críticos, así como el puesto de juego que ocupa en el equipo. En este sentido, la combinación de factores del contexto y del jugador, permiten interactuar en el rendimiento del lanzador en los momentos finales de partido durante sus lanzamientos de tiro libre. El presente trabajo de tesis doctoral tiene como objetivo encontrar aquellas variables más relacionadas con la disminución de rendimiento del jugador en los tiros libres durante el último minuto de juego, y la última serie de tiros libres en los partidos ajustados de baloncesto. Para alcanzar el objetivo del estudio se analizaron 124 partidos ajustados (diferencias iguales o inferiores a 2 puntos) de todas las competiciones (fase regular, playoff y copa del Rey) de la liga ACB durante las temporadas 2011-2012 a 2014-2015. Para el registro de variables se analizó el porcentaje de acierto en los tiros libres del lanzador en la liga regular, partido completo, último minuto y última serie. De este modo se trató de analizar qué variables del contexto y del jugador permitían explicar el rendimiento en los tiros libres durante el último minuto, y la última serie de tiros libres del partido. Por otro lado, se trató de conocer el grado de asociación entre el descenso del rendimiento (drop) en los momentos finales de partido, y las variables estudiadas del jugador: puesto de juego, edad, y años de experiencia profesional; mientras que las variables situacionales consideradas fueron: fase de competición, localización, clasificación, tiempo restante, y diferencia parcial en el marcador. Para el análisis de los datos se realizaron dos modelos estadísticos: 1º) un modelo de regresión lineal múltiple para conocer el efecto de las variables independientes en el porcentaje de aciertos del lanzador en el último minuto, y en la última serie de tiros libres del partido; y 2º) un análisis de regresión logística binomial para analizar la relación existente entre la probabilidad de tener un drop (disminución del rendimiento) y las características del lanzador, y las variables situacionales. Los resultados del modelo de regresión lineal múltiple mostraron efectos negativos significativos en el porcentaje de acierto en los tiros libres durante el último minuto, cuando los lanzadores son los pívots (-19,45%). Por otro lado, los resultados durante la última serie mostraron el efecto negativo significativo sobre la posición de pívot (- 19,30%) y la diferencia parcial en el marcador (-3,33%, para cada punto de diferencia en el marcador) en el porcentaje de acierto en los tiros libres. Las variables independientes edad, experiencia profesional, clasificación en la liga regular, fase de competición, localización, y tiempo restante, no revelaron efectos significativos en los modelos de regresión lineal. Los resultados de la regresión logística binomial revelaron que las variables experiencia profesional entre 13 y 18 años (OR = 4,63), jugar de alero (OR = 23,01), y jugar de base (OR = 10,68) están relacionadas con una baja probabilidad de disminuir el rendimiento durante el último minuto del partido; mientras que ir ganando, aumenta esta probabilidad (OR = 0,06). Además, los resultados de la última serie mostraron una menor disminución del rendimiento del jugador cuando tiene entre 13 y 18 años de experiencia (OR = 4,28), y juega de alero (OR = 8,06) o base (OR = 6,34). Por el contrario, las variables situacionales relacionadas con esa disminución del rendimiento del jugador son las fases eliminatorias (OR = 0,22) e ir ganando (OR = 0,04). Los resultados principales del estudio mostraron que existe una disminución del rendimiento del jugador en su porcentaje de acierto en los tiros libres durante el último minuto y en la última serie de lanzamientos del partido, y que está relacionada significativamente con la edad, experiencia profesional, puesto de juego del jugador, y diferencia parcial en el marcador. Encontrando relación también con la fase de competición, durante la última serie de tiros libres del partido. Esta información supone una valiosa información para el entrenador, y su aplicación en el ámbito competitivo real. En este sentido, la creación de simulaciones en el apartado de aplicaciones prácticas, permite predecir el porcentaje de acierto en los tiros libres de un jugador durante los momentos de mayor presión del partido, en base a su perfil de rendimiento. Lo que puede servir para realizar una toma de decisiones más idónea, con el objetivo de lograr el mejor resultado. Del mismo modo, orienta el tipo de proceso de entrenamiento que se ha de seguir, en relación a los jugadores más tendentes al drop, con el objetivo de minimizar el efecto de la presión sobre su capacidad para rendir adecuadamente en la ejecución de los tiros libres, y lograr de esta manera un rendimiento más homogéneo en todos los jugadores del equipo en esta faceta del juego, durante el momento crítico del final de partido. ABSTRACT. The final minute of a close game in basketball is a critical moment which is subject to many factors that influence its development. Thus, the success rate in free-throws during that period will determine, in many cases, the outcome of the game. Decrease of performance (drop) in this facet of play under pressure conditions, may be related to studied own multiple sports context variables, such as the remaining seconds of possession, the situation in the score (to be winning, drawing, or losing) the location of the match (playing at home or away), the competition phase (regular season or playoffs) or team level (best/worst teams). In addition, the characteristics of the player are very important related to his age and years of experience to face the critical moments, as well as his playing position into team. In this sense, the combination of factors in context and player, allows interact about performance of shooter in the final moments of the game during his free-throw shooting. The aim of this present doctoral thesis was find the most related variables to player´s drop in free throws in the last minute of the game and the last row of free-throws in closed games of basketball. To achieve the objective of the study, 124 closed games (less or equal than 2 points difference) were analyzed in every copetition in ACB league (regular season, playoff and cup) from 2011-2012 to 2014-2015 seasons. To record the variables, the percentage of success of the shooter in regular season, full game, last minute, and last row were analyzed. This way, it is tried to analyze which player and context variables explain the free-throw performance in last minute and last row of the game. On the other hand, it is tried to determine the degree of association between decrease of performance (drop) of the player in the final moments, and studied player variables: playing position, age, and years of professional experience; while considered situational variables considered were: competition phase, location, classification, remaining time, and score-line. For data analysis were performed two statistical models: 1) A multiple linear regression model to determine the effect of the independent variables in the succsess percentage of shooter at the last minute, and in the last row of free-throws in the game; and 2) A binomial logistic regression analysis to analyze the relationship between the probability of a drop (lower performance) and the characteristics of the shooter and situational variables. The results of multiple linear regression model showed significant negative effects on the free-throw percentage during last minute, when shooters are centers (-19.45%). On the other hand, results in the last series showed the significant negative effect on the center position (-19.30%) and score-line (-3.33% for each point difference in the score) in the free-throw percentage. The independent variables age, professional experience, ranking in the regular season, competition phase, location, and remaining time, revealed no significant effects on linear regression models. The results of the binomial logistic regression showed that the variables professional experience between 13 and 18 years (OR = 4.63), playing forward (OR = 23.01) and playing guard (OR = 10.68) are related to reduce the probability to decrease the performance during the last minute of the game. While wining, increases it (OR = 0.06). Furthermore, the results of the last row showed a reduction in performance degradation when player is between 13 and 18 years of experience (OR = 4.28), and playing forward (OR = 8.06) or guard (OR = 6.34). By contrast, the variables related to the decrease in performance of the player are the knockout phases (OR = 0.22) and wining (OR = 0.04). The main results of the study showed that there is a decrease in performance of the player in the percentage of success in free-throws in the last minute and last row of the game, and it is significantly associated with age, professional experience, and player position. Finding relationship with the competition phase, during last row of free-throws of the game too. This information is a valuable information for the coach, for applying in real competitive environment. In this sense, create simulations in the section of practical applications allows to predict the success rate of free-throw of a player during the most pressing moments of the game, based on their performance profile. What can be used to take more appropriate decisions in order to achieve the best result. Similarly, guides the type of training process must be followed in relation to the most favorable players to drop, in order to minimize the effect of pressure on their ability to perform properly in the execution of the free-throws. And to achieve, in this way, a more consistent performance in all team players in this facet of the game, during the critical moment in the final of the game.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractal and multifractal are concepts that have grown increasingly popular in recent years in the soil analysis, along with the development of fractal models. One of the common steps is to calculate the slope of a linear fit commonly using least squares method. This shouldn?t be a special problem, however, in many situations using experimental data the researcher has to select the range of scales at which is going to work neglecting the rest of points to achieve the best linearity that in this type of analysis is necessary. Robust regression is a form of regression analysis designed to circumvent some limitations of traditional parametric and non-parametric methods. In this method we don?t have to assume that the outlier point is simply an extreme observation drawn from the tail of a normal distribution not compromising the validity of the regression results. In this work we have evaluated the capacity of robust regression to select the points in the experimental data used trying to avoid subjective choices. Based on this analysis we have developed a new work methodology that implies two basic steps: ? Evaluation of the improvement of linear fitting when consecutive points are eliminated based on R pvalue. In this way we consider the implications of reducing the number of points. ? Evaluation of the significance of slope difference between fitting with the two extremes points and fitted with the available points. We compare the results applying this methodology and the common used least squares one. The data selected for these comparisons are coming from experimental soil roughness transect and simulated based on middle point displacement method adding tendencies and noise. The results are discussed indicating the advantages and disadvantages of each methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyses the relationship between productive efficiency and online-social-networks (OSN) in Spanish telecommunications firms. A data-envelopment-analysis (DEA) is used and several indicators of business ?social Media? activities are incorporated. A super-efficiency analysis and bootstrapping techniques are performed to increase the model?s robustness and accuracy. Then, a logistic regression model is applied to characterise factors and drivers of good performance in OSN. Results reveal the company?s ability to absorb and utilise OSNs as a key factor in improving the productive efficiency. This paper presents a model for assessing the strategic performance of the presence and activity in OSN.