46 resultados para log-based cost analysis
em Universidad Politécnica de Madrid
Resumo:
Chemical process accidents still occur and cost billions of dollars and, what is worse, many human lives. That means that traditional hazard analysis techniques are not enough mainly owing to the increase of complexity and size of chemical plants. In the last years, a new hazard analysis technique has been developed, changing the focus from reliability to system theory and showing promising results in other industries such as aeronautical and nuclear. In this paper, we present an approach for the application of STAMP and STPA analysis developed by Leveson in 2011 to the process industry.
Resumo:
The research in this thesis is related to static cost and termination analysis. Cost analysis aims at estimating the amount of resources that a given program consumes during the execution, and termination analysis aims at proving that the execution of a given program will eventually terminate. These analyses are strongly related, indeed cost analysis techniques heavily rely on techniques developed for termination analysis. Precision, scalability, and applicability are essential in static analysis in general. Precision is related to the quality of the inferred results, scalability to the size of programs that can be analyzed, and applicability to the class of programs that can be handled by the analysis (independently from precision and scalability issues). This thesis addresses these aspects in the context of cost and termination analysis, from both practical and theoretical perspectives. For cost analysis, we concentrate on the problem of solving cost relations (a form of recurrence relations) into closed-form upper and lower bounds, which is the heart of most modern cost analyzers, and also where most of the precision and applicability limitations can be found. We develop tools, and their underlying theoretical foundations, for solving cost relations that overcome the limitations of existing approaches, and demonstrate superiority in both precision and applicability. A unique feature of our techniques is the ability to smoothly handle both lower and upper bounds, by reversing the corresponding notions in the underlying theory. For termination analysis, we study the hardness of the problem of deciding termination for a speci�c form of simple loops that arise in the context of cost analysis. This study gives a better understanding of the (theoretical) limits of scalability and applicability for both termination and cost analysis.
Resumo:
Clasificación de una imagen de alta resolución "Quickbird" con la técnica de análisis de imágenes en base a objetos.
Resumo:
Clasificación de una imagen de alta resolución "Quickbird" con la técnica de análisis de imágenes en base a objetos
Resumo:
In programming languages with dynamic use of memory, such as Java, knowing that a reference variable x points to an acyclic data structure is valuable for the analysis of termination and resource usage (e.g., execution time or memory consumption). For instance, this information guarantees that the depth of the data structure to which x points is greater than the depth of the data structure pointed to by x.f for any field f of x. This, in turn, allows bounding the number of iterations of a loop which traverses the structure by its depth, which is essential in order to prove the termination or infer the resource usage of the loop. The present paper provides an Abstract-Interpretation-based formalization of a static analysis for inferring acyclicity, which works on the reduced product of two abstract domains: reachability, which models the property that the location pointed to by a variable w can be reached by dereferencing another variable v (in this case, v is said to reach w); and cyclicity, modeling the property that v can point to a cyclic data structure. The analysis is proven to be sound and optimal with respect to the chosen abstraction.
Resumo:
ICTs account nowadays for 2% of total carbon emissions. However, in a time when strict measures to reduce energyconsumption in all the industrial and services sectors are required, the ICT sector faces an increase in services and bandwidth demand. The deployment of NextGenerationNetworks (NGN) will be the answer to this new demand and specifically, the NextGenerationAccessNetworks (NGANs) will provide higher bandwidth access to users. Several policy and cost analysis are being carried out to understand the risks and opportunities of new deployments, though the question of which is the role of energyconsumption in NGANs seems off the table. Thus, this paper proposes amodel to analyze the energyconsumption of the main fiber-based NGAN architectures, i.e. Fiber To The House (FTTH) in both Passive Optical Network (PON) and Point-to-Point (PtP) variations, and FTTx/VDSL. The aim of this analysis is to provide deeper insight on the impact of new deployments on the energyconsumption of the ICT sector and the effects of energyconsumption on the life-cycle cost of NGANs. The paper presents also an energyconsumption comparison of the presented architectures, particularized in the specific geographic and demographic distribution of users of Spain, but easily extendable to other countries.
Resumo:
Irregular computations pose sorne of the most interesting and challenging problems in automatic parallelization. Irregularity appears in certain kinds of numerical problems and is pervasive in symbolic applications. Such computations often use dynamic data structures, which make heavy use of pointers. This complicates all the steps of a parallelizing compiler, from independence detection to task partitioning and placement. Starting in the mid 80s there has been significant progress in the development of parallelizing compilers for logic programming (and more recently, constraint programming) resulting in quite capable parallelizers. The typical applications of these paradigms frequently involve irregular computations, and make heavy use of dynamic data structures with pointers, since logical variables represent in practice a well-behaved form of pointers. This arguably makes the techniques used in these compilers potentially interesting. In this paper, we introduce in a tutoríal way, sorne of the problems faced by parallelizing compilers for logic and constraint programs and provide pointers to sorne of the significant progress made in the area. In particular, this work has resulted in a series of achievements in the areas of inter-procedural pointer aliasing analysis for independence detection, cost models and cost analysis, cactus-stack memory management, techniques for managing speculative and irregular computations through task granularity control and dynamic task allocation such as work-stealing schedulers), etc.
Resumo:
Proof carrying code is a general methodology for certifying that the execution of an untrusted mobile code is safe, according to a predefined safety policy. The basic idea is that the code supplier attaches a certifícate (or proof) to the mobile code which, then, the consumer checks in order to ensure that the code is indeed safe. The potential benefit is that the consumer's task is reduced from the level of proving to the level of checking, a much simpler task. Recently, the abstract interpretation techniques developed in logic programming have been proposed as a basis for proof carrying code [1]. To this end, the certifícate is generated from an abstract interpretation-based proof of safety. Intuitively, the verification condition is extracted from a set of assertions guaranteeing safety and the answer table generated during the analysis. Given this information, it is relatively simple and fast to verify that the code does meet this proof and so its execution is safe. This extended abstract reports on experiments which illustrate several issues involved in abstract interpretation-based code certification. First, we describe the implementation of our system in the context of CiaoPP: the preprocessor of the Ciao multi-paradigm (constraint) logic programming system. Then, by means of some experiments, we show how code certification is aided in the implementation of the framework. Finally, we discuss the application of our method within the área of pervasive systems which may lack the necessary computing resources to verify safety on their own. We herein illustrate the relevance of the information inferred by existing cost analysis to control resource usage in this context. Moreover, since the (rather complex) analysis phase is replaced by a simpler, efficient checking process at the code consumer side, we believe that our abstract interpretation-based approach to proof-carrying code becomes practically applicable to this kind of systems.
Resumo:
La computación basada en servicios (Service-Oriented Computing, SOC) se estableció como un paradigma ampliamente aceptado para el desarollo de sistemas de software flexibles, distribuidos y adaptables, donde las composiciones de los servicios realizan las tareas más complejas o de nivel más alto, frecuentemente tareas inter-organizativas usando los servicios atómicos u otras composiciones de servicios. En tales sistemas, las propriedades de la calidad de servicio (Quality of Service, QoS), como la rapídez de procesamiento, coste, disponibilidad o seguridad, son críticas para la usabilidad de los servicios o sus composiciones en cualquier aplicación concreta. El análisis de estas propriedades se puede realizarse de una forma más precisa y rica en información si se utilizan las técnicas de análisis de programas, como el análisis de complejidad o de compartición de datos, que son capables de analizar simultáneamente tanto las estructuras de control como las de datos, dependencias y operaciones en una composición. El análisis de coste computacional para la composicion de servicios puede ayudar a una monitorización predictiva así como a una adaptación proactiva a través de una inferencia automática de coste computacional, usando los limites altos y bajos como funciones del valor o del tamaño de los mensajes de entrada. Tales funciones de coste se pueden usar para adaptación en la forma de selección de los candidatos entre los servicios que minimizan el coste total de la composición, basado en los datos reales que se pasan al servicio. Las funciones de coste también pueden ser combinadas con los parámetros extraídos empíricamente desde la infraestructura, para producir las funciones de los límites de QoS sobre los datos de entrada, cuales se pueden usar para previsar, en el momento de invocación, las violaciones de los compromisos al nivel de servicios (Service Level Agreements, SLA) potenciales or inminentes. En las composiciones críticas, una previsión continua de QoS bastante eficaz y precisa se puede basar en el modelado con restricciones de QoS desde la estructura de la composition, datos empiricos en tiempo de ejecución y (cuando estén disponibles) los resultados del análisis de complejidad. Este enfoque se puede aplicar a las orquestaciones de servicios con un control centralizado del flujo, así como a las coreografías con participantes multiples, siguiendo unas interacciones complejas que modifican su estado. El análisis del compartición de datos puede servir de apoyo para acciones de adaptación, como la paralelización, fragmentación y selección de los componentes, las cuales son basadas en dependencias funcionales y en el contenido de información en los mensajes, datos internos y las actividades de la composición, cuando se usan construcciones de control complejas, como bucles, bifurcaciones y flujos anidados. Tanto las dependencias funcionales como el contenido de información (descrito a través de algunos atributos definidos por el usuario) se pueden expresar usando una representación basada en la lógica de primer orden (claúsulas de Horn), y los resultados del análisis se pueden interpretar como modelos conceptuales basados en retículos. ABSTRACT Service-Oriented Computing (SOC) is a widely accepted paradigm for development of flexible, distributed and adaptable software systems, in which service compositions perform more complex, higher-level, often cross-organizational tasks using atomic services or other service compositions. In such systems, Quality of Service (QoS) properties, such as the performance, cost, availability or security, are critical for the usability of services and their compositions in concrete applications. Analysis of these properties can become more precise and richer in information, if it employs program analysis techniques, such as the complexity and sharing analyses, which are able to simultaneously take into account both the control and the data structures, dependencies, and operations in a composition. Computation cost analysis for service composition can support predictive monitoring and proactive adaptation by automatically inferring computation cost using the upper and lower bound functions of value or size of input messages. These cost functions can be used for adaptation by selecting service candidates that minimize total cost of the composition, based on the actual data that is passed to them. The cost functions can also be combined with the empirically collected infrastructural parameters to produce QoS bounds functions of input data that can be used to predict potential or imminent Service Level Agreement (SLA) violations at the moment of invocation. In mission-critical applications, an effective and accurate continuous QoS prediction, based on continuations, can be achieved by constraint modeling of composition QoS based on its structure, known data at runtime, and (when available) the results of complexity analysis. This approach can be applied to service orchestrations with centralized flow control, and choreographies with multiple participants with complex stateful interactions. Sharing analysis can support adaptation actions, such as parallelization, fragmentation, and component selection, which are based on functional dependencies and information content of the composition messages, internal data, and activities, in presence of complex control constructs, such as loops, branches, and sub-workflows. Both the functional dependencies and the information content (described using user-defined attributes) can be expressed using a first-order logic (Horn clause) representation, and the analysis results can be interpreted as a lattice-based conceptual models.
Resumo:
This paper addresses the issue of the practicality of global flow analysis in logic program compilation, in terms of speed of the analysis, precisión, and usefulness of the information obtained. To this end, design and implementation aspects are discussed for two practical abstract interpretation-based flow analysis systems: MA , the MCC And-parallel Analyzer and Annotator; and Ms, an experimental mode inference system developed for SB-Prolog. The paper also provides performance data obtained (rom these implementations and, as an example of an application, a study of the usefulness of the mode information obtained in reducing run-time checks in independent and-parallelism.Based on the results obtained, it is concluded that the overhead of global flow analysis is not prohibitive, while the results of analysis can be quite precise and useful.
Resumo:
It is generally recognized that information about the runtime cost of computations can be useful for a variety of applications, including program transformation, granularity control during parallel execution, and query optimization in deductive databases. Most of the work to date on compile-time cost estimation of logic programs has focused on the estimation of upper bounds on costs. However, in many applications, such as parallel implementations on distributed-memory machines, one would prefer to work with lower bounds instead. The problem with estimating lower bounds is that in general, it is necessary to account for the possibility of failure of head unification, leading to a trivial lower bound of 0. In this paper, we show how, given type and mode information about procedures in a logic program, it is possible to (semi-automatically) derive nontrivial lower bounds on their computational costs. We also discuss the cost analysis for the special and frequent case of divide-and-conquer programs and show how —as a pragmatic short-term solution —it may be possible to obtain useful results simply by identifying and treating divide-and-conquer programs specially.
Resumo:
This paper addresses the issue of the practicality of global flow analysis in logic program compilation, in terms of both speed and precision of analysis. It discusses design and implementation aspects of two practical abstract interpretation-based flow analysis systems: MA3, the MOO Andparallel Analyzer and Annotator; and Ms, an experimental mode inference system developed for SB-Prolog. The paper also provides performance data obtained from these implementations. Based on these results, it is concluded that the overhead of global flow analysis is not prohibitive, while the results of analysis can be quite precise and useful.
Resumo:
Information about the computational cost of programs is potentially useful for a variety of purposes, including selecting among different algorithms, guiding program transformations, in granularity control and mapping decisions in parallelizing compilers, and query optimization in deductive databases. Cost analysis of logic programs is complicated by nondeterminism: on the one hand, procedures can return múltiple Solutions, making it necessary to estímate the number of solutions in order to give nontrivial upper bound cost estimates; on the other hand, the possibility of failure has to be taken into account while estimating lower bounds. Here we discuss techniques to address these problems to some extent.
Resumo:
Automatic cost analysis of programs has been traditionally concentrated on a reduced number of resources such as execution steps, time, or memory. However, the increasing relevance of analysis applications such as static debugging and/or certiflcation of user-level properties (including for mobile code) makes it interesting to develop analyses for resource notions that are actually application-dependent. This may include, for example, bytes sent or received by an application, number of files left open, number of SMSs sent or received, number of accesses to a datábase, money spent, energy consumption, etc. We present a fully automated analysis for inferring upper bounds on the usage that a Java bytecode program makes of a set of application programmer-deflnable resources. In our context, a resource is defined by programmer-provided annotations which state the basic consumption that certain program elements make of that resource. From these deflnitions our analysis derives functions which return an upper bound on the usage that the whole program (and individual blocks) make of that resource for any given set of input data sizes. The analysis proposed is independent of the particular resource. We also present some experimental results from a prototype implementation of the approach covering a signiflcant set of interesting resources.
Resumo:
Recent approaches to mobile code safety, like proof- arrying code, involve associating safety information to programs. The code supplier provides a program and also includes with it a certifícate (or proof) whose validity entails compliance with a predefined safety policy. The intended benefit is that the program consumer can locally validate the certifícate w.r.t. the "untrusted" program by means of a certifícate checker—a process which should be much simpler, eflicient, and automatic than generating the original proof. We herein introduce a novel approach to mobile code safety which follows a similar scheme, but which is based throughout on the use of abstract interpretation techniques. In our framework the safety policy is specified by using an expressive assertion language defined over abstract domains. We identify a particular slice of the abstract interpretation-based static analysis results which is especially useful as a certifícate. We propose an algorithm for checking the validity of the certifícate on the consumer side which is itself in fact a very simplified and eflicient specialized abstract-interpreter. Our ideas are illustrated through an example implemented in the CiaoPP system. Though further experimentation is still required, we believe the proposed approach is of interest for bringing the automation and expressiveness which is inherent in the abstract interpretation techniques to the área of mobile code safety.