7 resultados para localizzazione, location-aware, posizionamento indoor
em Universidad Politécnica de Madrid
Resumo:
Many context-aware applications rely on the knowledge of the position of the user and the surrounding objects to provide advanced, personalized and real-time services. In wide-area deployments, a routing protocol is needed to collect the location information from distant nodes. In this paper, we propose a new source-initiated (on demand) routing protocol for location-aware applications in IEEE 802.15.4 wireless sensor networks. This protocol uses a low power MAC layer to maximize the lifetime of the network while maintaining the communication delay to a low value. Its performance is assessed through experimental tests that show a good trade-off between power consumption and time delay in the localization of a mobile device.
Resumo:
This work describes the probabilistic modelling af a Bayesian-based mechanism to improve location estimates of an already deployed location system by fusing its outputs with low-cost binary sensors. This mechanism takes advantege of the localization captabilities of different technologies usually present in smart environments deployments. The performance of the proposed algorithm over a real sensor deployment is evaluated using simulated and real experimental data.
Resumo:
The increasing adoption of smartphones by the society has created a new area of research in recommender systems. This new domain is based on using location and context-awareness to provide personalization. This paper describes a model to generate context-aware recommendations for mobile recommender systems using banking data in order to recommend places where the bank customers have previously spent their money. In this work we have used real data provided by a well know Spanish bank. The mobile prototype deployed in the bank Labs environment was evaluated in a survey among 100 users with good results regarding usefulness and effectiveness. The results also showed that test users had a high confidence in a recommender system based on real banking data.
Resumo:
Los sistemas de recomendación son potentes herramientas de filtrado de información que permiten a usuarios solicitar sugerencias sobre ítems que cubran sus necesidades. Tradicionalmente estas recomendaciones han estado basadas en opiniones de los mismos, así como en datos obtenidos de su consumo histórico o comportamiento en el propio sistema. Sin embargo, debido a la gran penetración y uso de los dispositivos móviles en nuestra sociedad, han surgido nuevas oportunidades en el campo de los sistemas de recomendación móviles gracias a la información contextual que se puede obtener sobre la localización o actividad de los usuarios. Debido a este estilo de vida en el que todo tiende a la movilidad y donde los usuarios están plenamente interconectados, la información contextual no sólo es física, sino que también adquiere una dimensión social. Todo esto ha dado lugar a una nueva área de investigación relacionada con los Sistemas de Recomendación Basados en Contexto (CARS) móviles donde se busca incrementar el nivel de personalización de las recomendaciones al usar dicha información. Por otro lado, este nuevo escenario en el que los usuarios llevan en todo momento un terminal móvil consigo abre la puerta a nuevas formas de recomendar. Sustituir el tradicional patrón de uso basado en petición-respuesta para evolucionar hacia un sistema proactivo es ahora posible. Estos sistemas deben identificar el momento más adecuado para generar una recomendación sin una petición explícita del usuario, siendo para ello necesario analizar su contexto. Esta tesis doctoral propone un conjunto de modelos, algoritmos y métodos orientados a incorporar proactividad en CARS móviles, a la vez que se estudia el impacto que este tipo de recomendaciones tienen en la experiencia de usuario con el fin de extraer importantes conclusiones sobre "qué", "cuándo" y "cómo" se debe notificar proactivamente. Con este propósito, se comienza planteando una arquitectura general para construir CARS móviles en escenarios sociales. Adicionalmente, se propone una nueva forma de representar el proceso de recomendación a través de una interfaz REST, lo que permite crear una arquitectura independiente de dispositivo y plataforma. Los detalles de su implementación tras su puesta en marcha en el entorno bancario español permiten asimismo validar el sistema construido. Tras esto se presenta un novedoso modelo para incorporar proactividad en CARS móviles. Éste muestra las ideas principales que permiten analizar una situación para decidir cuándo es apropiada una recomendación proactiva. Para ello se presentan algoritmos que establecen relaciones entre lo propicia que es una situación y cómo esto influye en los elementos a recomendar. Asimismo, para demostrar la viabilidad de este modelo se describe su aplicación a un escenario de recomendación para herramientas de creación de contenidos educativos. Siguiendo el modelo anterior, se presenta el diseño e implementación de nuevos interfaces móviles de usuario para recomendaciones proactivas, así como los resultados de su evaluación entre usuarios, lo que aportó importantes conclusiones para identificar cuáles son los factores más relevantes a considerar en el diseño de sistemas proactivos. A raíz de los resultados anteriores, el último punto de esta tesis presenta una metodología para calcular cuán apropiada es una situación de cara a recomendar de manera proactiva siguiendo el modelo propuesto. Como conclusión, se describe la validación llevada a cabo tras la aplicación de la arquitectura, modelo de recomendación y métodos descritos en este trabajo en una red social de aprendizaje europea. Finalmente, esta tesis discute las conclusiones obtenidas a lo largo de la extensa investigación llevada a cabo, y que ha propiciado la consecución de una buena base teórica y práctica para la creación de sistemas de recomendación móviles proactivos basados en información contextual. ABSTRACT Recommender systems are powerful information filtering tools which offer users personalized suggestions about items whose aim is to satisfy their needs. Traditionally the information used to make recommendations has been based on users’ ratings or data on the item’s consumption history and transactions carried out in the system. However, due to the remarkable growth in mobile devices in our society, new opportunities have arisen to improve these systems by implementing them in ubiquitous environments which provide rich context-awareness information on their location or current activity. Because of this current all-mobile lifestyle, users are socially connected permanently, which allows their context to be enhanced not only with physical information, but also with a social dimension. As a result of these novel contextual data sources, the advent of mobile Context-Aware Recommender Systems (CARS) as a research area has appeared to improve the level of personalization in recommendation. On the other hand, this new scenario in which users have their mobile devices with them all the time offers the possibility of looking into new ways of making recommendations. Evolving the traditional user request-response pattern to a proactive approach is now possible as a result of this rich contextual scenario. Thus, the key idea is that recommendations are made to the user when the current situation is appropriate, attending to the available contextual information without an explicit user request being necessary. This dissertation proposes a set of models, algorithms and methods to incorporate proactivity into mobile CARS, while the impact of proactivity is studied in terms of user experience to extract significant outcomes as to "what", "when" and "how" proactive recommendations have to be notified to users. To this end, the development of this dissertation starts from the proposal of a general architecture for building mobile CARS in scenarios with rich social data along with a new way of managing a recommendation process through a REST interface to make this architecture multi-device and cross-platform compatible. Details as regards its implementation and evaluation in a Spanish banking scenario are provided to validate its usefulness and user acceptance. After that, a novel model is presented for proactivity in mobile CARS which shows the key ideas related to decide when a situation warrants a proactive recommendation by establishing algorithms that represent the relationship between the appropriateness of a situation and the suitability of the candidate items to be recommended. A validation of these ideas in the area of e-learning authoring tools is also presented. Following the previous model, this dissertation presents the design and implementation of new mobile user interfaces for proactive notifications. The results of an evaluation among users testing these novel interfaces is also shown to study the impact of proactivity in the user experience of mobile CARS, while significant factors associated to proactivity are also identified. The last stage of this dissertation merges the previous outcomes to design a new methodology to calculate the appropriateness of a situation so as to incorporate proactivity into mobile CARS. Additionally, this work provides details about its validation in a European e-learning social network in which the whole architecture and proactive recommendation model together with its methods have been implemented. Finally, this dissertation opens up a discussion about the conclusions obtained throughout this research, resulting in useful information from the different design and implementation stages of proactive mobile CARS.
Resumo:
In this paper we propose a flexible Multi-Agent Architecture together with a methodology for indoor location which allows us to locate any mobile station (MS) such as a Laptop, Smartphone, Tablet or a robotic system in an indoor environment using wireless technology. Our technology is complementary to the GPS location finder as it allows us to locate a mobile system in a specific room on a specific floor using the Wi-Fi networks. The idea is that any MS will have an agent known at a Fuzzy Location Software Agent (FLSA) with a minimum capacity processing at its disposal which collects the power received at different Access Points distributed around the floor and establish its location on a plan of the floor of the building. In order to do so it will have to communicate with the Fuzzy Location Manager Software Agent (FLMSA). The FLMSAs are local agents that form part of the management infrastructure of the Wi-Fi network of the Organization. The FLMSA implements a location estimation methodology divided into three phases (measurement, calibration and estimation) for locating mobile stations (MS). Our solution is a fingerprint-based positioning system that overcomes the problem of the relative effect of doors and walls on signal strength and is independent of the network device manufacturer. In the measurement phase, our system collects received signal strength indicator (RSSI) measurements from multiple access points. In the calibration phase, our system uses these measurements in a normalization process to create a radio map, a database of RSS patterns. Unlike traditional radio map-based methods, our methodology normalizes RSS measurements collected at different locations on a floor. In the third phase, we use Fuzzy Controllers to locate an MS on the plan of the floor of a building. Experimental results demonstrate the accuracy of the proposed method. From these results it is clear that the system is highly likely to be able to locate an MS in a room or adjacent room.
Resumo:
This paper proposes a low cost and complexity indoor location and navigation system using visible light communications and a mobile device. LED lamps work as beacons transmitting an identifier code so a mobile device can know its location. Experimental designs for transmitter and receiver interfaces are presented and potential applications are discussed.
Resumo:
In recent years, there has been a great increase in the development of wireless technologies and location services. For this reason, numerous projects in the location field, have arisen. In addition, with the appearance of the open Android operating system, wireless technologies are being developed faster than ever. This Project approaches the design and development of a system that combines the technologies of wireless, location and Android with the implementation of an indoor positioning system. As a result, an Android application has been obtained, which detects the position of a phone in a simple and useful way. The application is based on the WIFI manager API of Android. It combines the data stored in a SQL database with the wifi data received at any given time. Afterwards the position of the user is determined with the algorithm that has been implemented. This application is able to obtain the position of any person who is inside a building with Wi-Fi coverage, and display it on the screen of any device with the Android operating system. Besides the estimation of the position, this system displays a map that helps you see in which quadrant of the room are positioned in real time. This system has been designed with a simple interface to allow people without technology knowledge. Finally, several tests and simulations of the system have been carried out to see its operation and accuracy. The performance of the system has been verified in two different places and changes have been made in the Java code to improve its precision and effectiveness. As a result of the several tests, it has been noticed that the placement of the access point (AP) and the configuration of the Wireless network is an important point that should be taken into account to avoid interferences and errors as much as possible, in the estimation of the position. RESUMEN. En los últimos años, se ha producido un incremento en el desarrollo de tecnologías inalámbricas y en servicios de localización y posicionamiento. Por esta razón, han surgido numerosos proyectos relacionados con estas tecnologías. Por otra parte, un punto importante en el desarrollo de estas tecnologías ha sido la aparición del lenguaje Android que ha hecho que estas nuevas tecnologías se implementaran con una mayor rapidez. Este proyecto, se acerca al diseño y desarrollo de un sistema que combina tecnologías inalámbricas, de ubicación y uso de lenguaje Android para el desarrollo de una aplicación de un sistema de posicionamiento en interiores. Como consecuencia de esto se ha obtenido una aplicación Android que detecta la posición de un dispositivo móvil de una manera sencilla e intuititva. La aplicación se basa en la API WIFI de Android, que combina los datos almacenados en una base de datos SQL con los datos recibidos vía Wi-Fi en cualquier momento. A continuación, la posición del usuario se determina con el algoritmo que se ha implementado a lo largo de todo el proyecto utilizando código Android. Esta aplicación es capaz de obtener la posición de cualquier persona que se encuentra dentro de un edificio con cobertura Wi-Fi, mostrando por pantalla la ubicación del usuario en cualquier dispositivo que disponga de sistema operativo Android. Además de la estimación de la posición, este sistema muestra un mapa que le ayuda a ver en qué cuadrante de la sala está situado el usuario. Este sistema ha sido diseñado con una interfaz sencilla para permitir que usuarios sin conocimiento tecnológico o no acostumbrados al uso de los nuevos dispositivos de hoy en día puedan usarlo de una manera sencilla y de forma intuitiva. Por último, se han llevado a cabo varias pruebas y simulaciones del sistema para verificar su funcionamiento y precisión. El rendimiento del sistema se ha comprobado en dos puntos diferentes de la sala (lugar donde se han hecho todas las pruebas y desarrollado la aplicación) realizando cambios en el código Java para mejorar aún más la precisión y eficacia del posicionamiento. Como resultado de todo esto, se ha comprobado que la ubicación del punto de acceso (AP) y la configuración de la red inalámbrica es importante, y por ello se debe de tener en cuenta para evitar interferencias y tantos errores como sea posible en la estimación de la posición.