6 resultados para lobes

em Universidad Politécnica de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multibeam antenna study based on Butler network will be undertaken in this document. These antenna designs combines phase shift systems with multibeam networks to optimize multiple channel systems. The system will work at 1.7 GHz with circular polarization. Specifically, result simulations and measurements of 3 element triangular subarray will be shown. A 45 element triangular array will be formed by the subarrays. Using triangular subarrays, side lobes and crossing points are reduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arrays of coherently driven photomixers with antenna (antenna emitter arrays, AEAs) have been evaluated as a possibility to overcome the power limitations of individual conventional photomixers with antenna (?antenna emitters?, AEs) for the generation of continuous-wave (CW) THz radiation. In this paper, ?large area emitters? (LAEs) are proposed as an alternative approach, and compared with AEAs. In this antenna-free new scheme of photomixing, the THz radiation originates directly from the acceleration of photo-induced charge carriers generated within a large semiconductor area. The quasi-continuous distribution of emitting elements corresponds to a high-density array and results in favorable radiation profiles without side lobes. Moreover, the achievable THz power is expected to outnumber even large AEAs. Last not least, the technological challenge of fabricating LAEs appears to be significantly less demanding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El objetivo fundamental de esta tesis es la caracterización de la morfología y del estado de deformaciones y tensiones del Glaciar Hurd (Isla Livingston, Archipiélago de las Shetland del Sur, Antártida), mediante una combinación de observaciones de campo, registros de georradar y simulaciones numéricas. La morfología y el estado de deformaciones y tensiones actuales son la expresión de la evolución dinámica del glaciar desde tiempos pretéritos hasta recientes, y su análisis nos dará las pautas con las cuales ser capaces de predecir, con el apoyo de las simulaciones numéricas, su evolución futura. El primer aspecto que se aborda es el estudio de las estructuras que pueden observarse en la superficie del glaciar. Describimos las distintas técnicas utilizadas (medidas de campo, fotointerpretación de ortofotografías, análisis geoquímico de cenizas volcánicas, etc.) y presentamos el análisis e interpretación de los resultados morfo-estructurales, así como la correlación, mediante análisis geoquímicos (fluorescencia de rayos X), entre las cenizas volcánicas que extruyen en la superficie del Glaciar Hurd y las del volcán Decepción, origen de las cenizas. Esto nos permite realizar una datación de las mismas como Tefra 1, correspondiente a la erupción de 1970, Tefra 2, correspondiente a las erupciones pre-1829, y el conjunto Tefra 3, asociado a las erupciones más antiguas. En segundo lugar nos ocupamos de las estructuras presentes en el interior del glaciar, cuya herramienta de detección fundamental es el georradar. Identificadas estas estructuras internas, las vinculamos con las observadas en la superficie del glaciar. También hemos estudiado la estructura hidrotérmica del glaciar, obteniendo una serie de evidencias adicionales de su carácter politérmico. Entre éstas se contaban, hasta ahora, las basadas en el valor del parámetro de rigidez de la relación constitutiva del hielo determinada por ajuste de modelos dinámicos y observaciones realizados por Otero (2008) y las basadas en las velocidades de las ondas de radar en el hielo determinadas con el método de punto medio común por Navarro y otros (2009). Las evidencias adicionales que aportamos en esta tesis son: 1) la presencia de estructuras típicas de régimen compresivo en la zona terminal del glaciar y de cizalla en los márgenes del mismo, y 2) la presencia de un estrato superficial de hielo frío (por encima de otro templado) en la zona de ablación de los tres lóbulos del Glaciar Hurd –Sally Rocks, Argentina y Las Palmas–, que alcanzan espesores de 70, 50 y 40 m, respectivamente. Este estrato de hielo frío está probablemente congelado al lecho subglaciar en la zona terminal (Molina y otros, 2007; esta tesis). Por último, nos ocupamos de la simulación numérica de la dinámica glaciar. Presentamos el modelo físico-matemático utilizado, discutimos sus condiciones de contorno y cómo éstas se miden en los trabajos de campo, y describimos el procedimiento de resolución numérica del sistema de ecuaciones parciales del modelo. Presentamos los resultados para los campos de velocidades, deformaciones y tensiones, comparando estos resultados con las estructuras observadas. También incluimos el análisis de las elipses de deformación acumulativa, que proporcionan información sobre las estructuras a las que puede dar lugar la evolución del estado de deformaciones y tensiones a las que se ve sometido el hielo según avanza, lentamente, desde la cabecera hasta la zona terminal del glaciar, con tiempos de tránsito de hasta 1.250 años, recogiendo así la historia de deformaciones en el glaciar. Concluyendo, ponemos de manifiesto en esta tesis que las medidas de campo de las estructuras y niveles de cenizas, las medidas de georradar y las simulaciones numéricas de la dinámica glaciar, realizadas de forma combinada, permiten caracterizar el régimen actual de velocidades, deformaciones y tensiones del glaciar, entender su evolución en el pasado y predecir su evolución futura. ABSTRACT The main objective of this thesis is to characterize the morphology and the state of strains and stresses of Hurd Glacier (Livingston Island, South Shetland Islands archipelago, Antarctica) through a combination of field observations, ground-penetrating radar measurements and numerical simulations. The morphology and the current state of strain and stresses are the expression of the dynamic evolution of the glacier from the past to recent times, and their analysis gives us the guidelines to be able to predict, with the support of numerical simulations, its future evolution. The first subject addressed is the study of structures that can be observed on the glacier surface. We describe the different techniques used (field measurements, photointerpretation of orthophotos, geochemical analysis of volcanic ashes, etc.) and we present the analysis and interpretation of the morpho-structural results, as well as the correlation with geochemical analysis (XRF) between the volcanic ashes extruded to the surface of Hurd Glacier and those of Deception Island volcano, from which the ashes originate. This allows us dating the ashes as Tephra 1, corresponding to the 1970 eruption, Tephra 2, corresponding to the pre-1829 eruptions, and the Tephra 3 group, associated with older eruptions. Secondly we focus on the study of the structures present within the glacier, which are detected with the help of ground-penetrating radar. Once identified, we link these internal structures with those observed on the glacier surface. We also study the hydrothermal structure of the glacier, getting a series of additional evidences of its polythermal structure. Among the evidences available so far, we can mention those based on the value of the stiffness parameter of the constitutive relation of ice, determined by fitting dynamic models to observations, as done by Otero (2008), and those based on the velocity of propagation of the radar waves through the glacier ice, measured using the common midpoint method, as done by Navarro et al. (2009). The additional evidences that we provide in this thesis are: 1) the presence of structures typical of compressive regime in the terminal zone of the glacier, together with shear at its margins, and 2) the presence of a surface layer of cold ice (overlying a layer of temperate ice) in the ablation zone of the three lobes of Hurd Glacier –Sally Rocks, Argentina and Las Palmas–, reaching thicknesses of 70, 50 and 40 m, respectively. This cold layer is probably frozen to the subglacial bed in the terminal zone (Molina and others 2007; this thesis). Finally, we deal with the numerical simulation of glacier dynamics. We present the physical-mathematical model, discuss its boundary conditions and how they are measured in the field work, and describe the method of numerical solution of the model’s partial differential equations. We present the results for the velocity, strain and stress fields, comparing these results with the observed structures. We also include an analysis of the ellipses of cumulative deformation, which provide information about the structures that can result from the evolution of the strain and stress regime of the glacier ice as it moves slowly from the head to the snout of the glacier, with transit times of up to 1,250 years, so picking the history of deformation of the glacier. Summarizing, we show in this thesis that field measurements of structures and ash layers, ground-penetrating radar measurements and numerical simulations of glacier dynamics, performed in combination, allow us to characterize the current regime of velocities, strains and stresses of the glacier, to understand its past evolution and to predict its future evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los sistemas de imagen por ultrasonidos son hoy una herramienta indispensable en aplicaciones de diagnóstico en medicina y son cada vez más utilizados en aplicaciones industriales en el área de ensayos no destructivos. El array es el elemento primario de estos sistemas y su diseño determina las características de los haces que se pueden construir (forma y tamaño del lóbulo principal, de los lóbulos secundarios y de rejilla, etc.), condicionando la calidad de las imágenes que pueden conseguirse. En arrays regulares la distancia máxima entre elementos se establece en media longitud de onda para evitar la formación de artefactos. Al mismo tiempo, la resolución en la imagen de los objetos presentes en la escena aumenta con el tamaño total de la apertura, por lo que una pequeña mejora en la calidad de la imagen se traduce en un aumento significativo del número de elementos del transductor. Esto tiene, entre otras, las siguientes consecuencias: Problemas de fabricación de los arrays por la gran densidad de conexiones (téngase en cuenta que en aplicaciones típicas de imagen médica, el valor de la longitud de onda es de décimas de milímetro) Baja relación señal/ruido y, en consecuencia, bajo rango dinámico de las señales por el reducido tamaño de los elementos. Complejidad de los equipos que deben manejar un elevado número de canales independientes. Por ejemplo, se necesitarían 10.000 elementos separados λ 2 para una apertura cuadrada de 50 λ. Una forma sencilla para resolver estos problemas existen alternativas que reducen el número de elementos activos de un array pleno, sacrificando hasta cierto punto la calidad de imagen, la energía emitida, el rango dinámico, el contraste, etc. Nosotros planteamos una estrategia diferente, y es desarrollar una metodología de optimización capaz de hallar de forma sistemática configuraciones de arrays de ultrasonido adaptados a aplicaciones específicas. Para realizar dicha labor proponemos el uso de los algoritmos evolutivos para buscar y seleccionar en el espacio de configuraciones de arrays aquellas que mejor se adaptan a los requisitos fijados por cada aplicación. En la memoria se trata el problema de la codificación de las configuraciones de arrays para que puedan ser utilizados como individuos de la población sobre la que van a actuar los algoritmos evolutivos. También se aborda la definición de funciones de idoneidad que permitan realizar comparaciones entre dichas configuraciones de acuerdo con los requisitos y restricciones de cada problema de diseño. Finalmente, se propone emplear el algoritmo multiobjetivo NSGA II como herramienta primaria de optimización y, a continuación, utilizar algoritmos mono-objetivo tipo Simulated Annealing para seleccionar y retinar las soluciones proporcionadas por el NSGA II. Muchas de las funciones de idoneidad que definen las características deseadas del array a diseñar se calculan partir de uno o más patrones de radiación generados por cada solución candidata. La obtención de estos patrones con los métodos habituales de simulación de campo acústico en banda ancha requiere tiempos de cálculo muy grandes que pueden hacer inviable el proceso de optimización con algoritmos evolutivos en la práctica. Como solución, se propone un método de cálculo en banda estrecha que reduce en, al menos, un orden de magnitud el tiempo de cálculo necesario Finalmente se presentan una serie de ejemplos, con arrays lineales y bidimensionales, para validar la metodología de diseño propuesta comparando experimentalmente las características reales de los diseños construidos con las predicciones del método de optimización. ABSTRACT Currently, the ultrasound imaging system is one of the powerful tools in medical diagnostic and non-destructive testing for industrial applications. Ultrasonic arrays design determines the beam characteristics (main and secondary lobes, beam pattern, etc...) which assist to enhance the image resolution. The maximum distance between the elements of the array should be the half of the wavelength to avoid the formation of grating lobes. At the same time, the image resolution of the target in the region of interest increases with the aperture size. Consequently, the larger number of elements in arrays assures the better image quality but this improvement contains the following drawbacks: Difficulties in the arrays manufacturing due to the large connection density. Low noise to signal ratio. Complexity of the ultrasonic system to handle large number of channels. The easiest way to resolve these issues is to reduce the number of active elements in full arrays, but on the other hand the image quality, dynamic range, contrast, etc, are compromised by this solutions In this thesis, an optimization methodology able to find ultrasound array configurations adapted for specific applications is presented. The evolutionary algorithms are used to obtain the ideal arrays among the existing configurations. This work addressed problems such as: the codification of ultrasound arrays to be interpreted as individuals in the evolutionary algorithm population and the fitness function and constraints, which will assess the behaviour of individuals. Therefore, it is proposed to use the multi-objective algorithm NSGA-II as a primary optimization tool, and then use the mono-objective Simulated Annealing algorithm to select and refine the solutions provided by the NSGA I I . The acoustic field is calculated many times for each individual and in every generation for every fitness functions. An acoustic narrow band field simulator, where the number of operations is reduced, this ensures a quick calculation of the acoustic field to reduce the expensive computing time required by these functions we have employed. Finally a set of examples are presented in order to validate our proposed design methodology, using linear and bidimensional arrays where the actual characteristics of the design are compared with the predictions of the optimization methodology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El trabajo contenido en esta tesis doctoral está encuadrado en el desarrollo de antenas reconfigurables electrónicamente capaces de proporcionar prestaciones competitivas a las aplicaciones cada vez más comunes que operan a frecuencias superiores a 60 GHz. En concreto, esta tesis se centra en el estudio, diseño, e implementación de las antenas reflectarray, a las que se introduce la tecnología de cristal líquido como elemento característico con el que se consigue reconfigurabilidad de haz de forma electrónica. Desde un punto de vista muy general, se puede describir un cristal líquido como un material cuya permitividad eléctrica es variable y controlada por una excitación externa, que generalmente suele corresponderse con un campo eléctrico quasi-estático (AC). Las antenas reflectarray de cristal líquido se han escogido como objeto de estudio por varias razones. La primera de ellas tiene que ver con las ventajas que los reflectarrays, y en especial aquellos realizados en configuración planar, proporcionan con respecto a otras antenas de alta ganancia como los reflectores o los “phased-arrays”. En los reflectarrays, la alimentación a través de una fuente primaria común (característica de reflectores) y el elevado número de grados de libertad de las celdas que los componen (característica de arrays) hacen que estas antenas puedan proporcionar prestaciones eléctricas iguales o mejores que las anteriores, a un coste más reducido y con estructuras de antena más compactas. La segunda razón radica en la flexibilidad que ofrece el cristal líquido a ser confinado y polarizado en recintos de geometría variada, como consecuencia de su fluidez (propiedad de los líquidos). Por ello, la tecnología de cristal líquido permite que el propio elemento reconfigurable en las celdas de reflectarray se adapte a la configuración planar de manera que en sí mismo, el cristal líquido sea una o varias de las capas características de esta configuración. Esto simplifica de forma drástica la estructura y la fabricación de este tipo de antenas, incluso si se comparan con reflectarrays reconfigurables basados en otras tecnologías como diodos, MEMS, etc. Por tanto, su coste y desarrollo es muy reducido, lo que hace que se puedan fabricar reflectarrays reconfigurables eléctricamente grandes, a bajo coste, y en producción elevada. Un ejemplo claro de una estructura similar, y que ha tenido éxito comercial, son las pantallas de cristal líquido. La tercera razón reside en el hecho de que el cristal líquido es, hasta la fecha, de las pocas tecnologías capaces de ofrecer reconfigurabilidad del haz a frecuencias superiores a 60 GHz. De hecho, el cristal líquido permite reconfigurabilidad en un amplio margen de frecuencias, que va desde DC a frecuencias del espectro visible, incluyendo las microondas y los THz. Otras tecnologías, como los materiales ferroeléctricos, el grafeno o la tecnología CMOS “on chip” permiten también conmutar el haz en estas frecuencias. Sin embargo, la tecnología CMOS tiene un elevado coste y actualmente está limitada a frecuencias inferiores a 150 GHz, y aunque los materiales ferroeléctricos o el grafeno puedan conmutar a frecuencias más altas y en un rango más amplio, tienen serias dificultades que los hacen aún inmaduros. En el caso de los materiales ferroeléctricos, los elevados voltajes para conmutar el material los hacen poco atractivos, mientras que en el caso del grafeno, su modelado aún está en discusión, y todavía no se han arrojado resultados experimentales que validen su idoneidad. Estas tres razones hacen que los reflectarrays basados en cristal líquido sean atractivos para multitud de aplicaciones de haz reconfigurable a frecuencias superiores a 60 GHz. Aplicaciones como radar de escaneo de imágenes de alta resolución, espectroscopia molecular, radiómetros para observación atmosférica, o comunicaciones inalámbricas de alta frecuencia (WiGig) son algunas de ellas. La tesis está estructurada en tres partes. En la primera de ellas se describen las características más comunes de los cristales líquidos, centrándonos en detalle en aquellas propiedades ofrecidas por este material en fase nemática. En concreto, se estudiará la anisotropía dieléctrica (Ae) de los cristales líquidos uniaxiales, que son los que se emplean en esta tesis, definida como la diferencia entre la permitividad paralela (£//) y la perpendicular (e±): Ae = e,, - e±. También se estudiará la variación de este parámetro (Ae) con la frecuencia, y el modelado electromagnético macroscópico más general que, extraído a partir de aquella, permite describir el cristal líquido para cada tensión de polarización en celdas de geometría planar. Este modelo es de suma importancia para garantizar precisión en el desfasaje proporcionado por las diferentes celdas reconfigurables para reflectarrays que se describirán en la siguiente parte de la tesis. La segunda parte de la tesis se centra en el diseño de celdas reflectarray resonantes basadas en cristal líquido. La razón por la que se escogen estos tipos de celdas reside en el hecho de que son las únicas capaces de proporcionar rangos de fase elevados ante la reducida anisotropía dieléctrica que ofrecen los cristales líquidos. El objetivo de esta parte trata, por tanto, de obtener estructuras de celdas reflectarray que sean capaces de proporcionar buenas prestaciones eléctricas a nivel de antena, mejorando sustancialmente las prestaciones de las celdas reportadas en el estado del arte, así como de desarrollar una herramienta de diseño general para aquellas. Para ello, se estudian las prestaciones eléctricas de diferentes tipos de elementos resonantes de cristal líquido que van, desde el más sencillo, que ha limitado el estado de la técnica hasta el desarrollo de esta tesis y que está formado por un sólo resonador, a elementos que constan de varios resonadores (multi-resonantes) y que pueden ser monocapa o multicapa. En un primer paso, el procedimiento de diseño de estas estructuras hace uso de un modelo convencional de cristal líquido que ha venido siendo usado en el estado del arte para este tipo de celdas, y que considera el cristal líquido como un material homogéneo e isótropo cuya permitividad varía entre (e/7) y (e±). Sin embargo, en esta parte de la tesis se demuestra que dicho modelado no es suficiente para describir de forma genérica el comportamiento del cristal líquido en las celdas tipo reflectarray. En la tesis se proponen procedimientos más exactos para el análisis y diseño basados en un modelo más general que define el cristal líquido como un material anisótropo e inhomogeneo en tres dimensiones, y se ha implementado una técnica que permite optimizar celdas multi-resonantes de forma eficiente para conseguir elevadas prestaciones en cuanto a ancho de banda, rango de fase, pérdidas, o sensibilidad al ángulo de incidencia. Los errores cometidos en el uso del modelado convencional a nivel de celda (amplitud y fase) se han analizado para varias geometrías, usando medidas de varios prototipos de antena que usan un cristal líquido real a frecuencias superiores a 100 GHz. Las medidas se han realizado en entorno periódico mediante un banco cuasi-óptico, que ha sido diseñado especialmente para este fin. Uno de estos prototipos se ha optimizado a 100 GHz para conseguir un ancho de banda relativamente elevado (10%), pérdidas reducidas, un rango de fase mayor de 360º, baja sensibilidad al ángulo de incidencia, y baja influencia de la inhomogeneidad transversal del cristal líquido en la celda. Estas prestaciones a nivel de celda superan de forma clara aquellas conseguidas por otros elementos que se han reportado en la literatura, de manera que dicho prototipo se ha usado en la última parte de la tesis para realizar diversas antenas de barrido. Finalmente, en esta parte se presenta una estrategia de caracterización de la anisotropía macroscópica a partir de medidas de los elementos de reflectarray diseñados en banco cuasi-óptico, obteniendo resultados tanto en las frecuencias de interés en RF como en AC, y comparándolas con aquellas obtenidas mediante otros métodos. La tercera parte de la tesis consiste en el estudio, diseño, fabricación y medida de antenas reconfigurables basadas en cristal líquido en configuraciones complejas. En reflectarrays pasivos, el procedimiento de diseño de la antena se limita únicamente al ajuste en cada celda de la antena de las dimensiones de las metalizaciones que se emplean para el control de fase, mediante procesos de optimización bien conocidos. Sin embargo, en el caso de reflectarrays reconfigurables basados en cristal líquido, resulta necesario un paso adicional, que consiste en calcular de forma adecuada las tensiones de control en cada celda del reflectarray para configurar la fase requerida en cada una de ellas, así como diseñar la estructura y los circuitos de control que permitan direccionar a cada elemento su tensión correspondiente. La síntesis de tensiones es por tanto igual o más importante que el diseño de la geometría de las celdas, puesto que éstas son las que están directamente relacionadas con la fase. En el estado del arte, existen varias estrategias de síntesis de tensiones que se basan en la caracterización experimental de la curva de fase respecto al voltaje. Sin embargo, esta caracterización sólo puede hacerse a un solo ángulo de incidencia y para unas determinadas dimensiones de celda, lo que produce que las tensiones sintetizadas sean diferentes de las adecuadas, y en definitiva que se alcancen errores de fase mayores de 70º. De esta forma, hasta la fecha, las prestaciones a nivel de antena que se han conseguido son reducidas en cuanto a ancho de banda, rango de escaneo o nivel de lóbulos secundarios. En esta última parte de la tesis, se introduce una nueva estrategia de síntesis de tensiones que es capaz de predecir mediante simulaciones, y con alta precisión, las tensiones que deben introducirse en cada celda teniendo en cuenta su ángulo de incidencia, sus dimensiones, la frecuencia, así como la señal de polarización definida por su frecuencia y forma de onda AC. Esta estrategia se basa en modelar cada uno de los estados de permitividad del cristal líquido como un sustrato anisótropo con inhomogeneidad longitudinal (1D), o en ciertos casos, como un tensor equivalente homogéneo. La precisión de ambos modelos electromagnéticos también se discute. Con el objetivo de obtener una herramienta eficiente de cálculo de tensiones, también se ha escrito e implementado una herramienta de análisis basada en el Método de los Momentos en el Dominio Espectral (SD-MoM) para sustratos estratificados anisótropos, que se usa en cada iteración del procedimiento de síntesis para analizar cada una de las celdas de la antena. La síntesis de tensiones se ha diseñado además para reducir al máximo el efecto del rizado de amplitud en el diagrama de radiación, que es característico en los reflectarrays que están formados por celdas con pérdidas elevadas, lo que en sí, supone un avance adicional para la obtención de mejores prestaciones de antena. Para el cálculo de los diagramas de radiación empleados en el procedimiento de síntesis, se asume un análisis elemento a elemento considerando periodicidad local, y se propone el uso de un método capaz de modelar el campo incidente de forma que se elimine la limitación de la periodicidad local en la excitación. Una vez definida la estrategia adecuada de cálculo de las tensiones a aplicar al cristal líquido en cada celda, la estructura de direccionamiento de las mismas en la antena, y diseñados los circuitos de control, se diseñan, fabrican y miden dos prototipos diferentes de antena de barrido electrónico a 100 GHz usando las celdas anteriormente presentadas. El primero de estos prototipos es un reflectarray en configuración “single offset” con capacidad de escaneo en un plano (elevación o azimut). Aunque previamente se realizan diseños de antenas de barrido en 2D a varias frecuencias en el rango de milimétricas y sub-milimétricas, y se proponen ciertas estrategias de direccionamiento que permiten conseguir este objetivo, se desarrolla el prototipo con direccionamiento en una dimensión con el fin de reducir el número de controles y posibles errores de fabricación, y así también validar la herramienta de diseño. Para un tamaño medio de apertura (con un numero de filas y columnas entre 30 y 50 elementos, lo que significa un reflectarray con un número de elementos superior a 900), la configuración “single offset” proporciona rangos de escaneo elevados, y ganancias que pueden oscilar entre los 20 y 30 dBi. En concreto, el prototipo medido proporciona un haz de barrido en un rango angular de 55º, en el que el nivel de lóbulos secundarios (SLL) permanece mejor de -13 dB en un ancho de banda de un 8%. La ganancia máxima es de 19.4 dBi. Estas prestaciones superan de forma clara aquellas conseguidas por otros autores. El segundo prototipo se corresponde con una antena de doble reflector que usa el reflectarray de cristal líquido como sub-reflector para escanear el haz en un plano (elevación o azimut). El objetivo básico de esta geometría es obtener mayores ganancias que en el reflectarray “single offset” con una estructura más compacta, aunque a expensas de reducir el rango de barrido. En concreto, se obtiene una ganancia máxima de 35 dBi, y un rango de barrido de 12º. Los procedimientos de síntesis de tensiones y de diseño de las estructuras de las celdas forman, en su conjunto, una herramienta completa de diseño precisa y eficiente de antenas reflectarray reconfigurables basados en cristales líquidos. Dicha herramienta se ha validado mediante el diseño, la fabricación y la medida de los prototipos anteriormente citados a 100 GHz, que consiguen algo nunca alcanzado anteriormente en la investigación de este tipo de antenas: unas prestaciones competitivas y una predicción excelente de los resultados. El procedimiento es general, y por tanto se puede usar a cualquier frecuencia en la que el cristal líquido ofrezca anisotropía dieléctrica, incluidos los THz. Los prototipos desarrollados en esta tesis doctoral suponen también unas de las primeras antenas de barrido real a frecuencias superiores a 100 GHz. En concreto, la antena de doble reflector para escaneo de haz es la primera antena reconfigurable electrónicamente a frecuencias superiores a 60 GHz que superan los 25 dBi de ganancia, siendo a su vez la primera antena de doble reflector que contiene un reflectarray reconfigurable como sub-reflector. Finalmente, se proponen ciertas mejoras que aún deben se deben realizar para hacer que estas antenas puedan ser un producto completamente desarrollado y competitivo en el mercado. ABSTRACT The work presented in this thesis is focused on the development of electronically reconfigurable antennas that are able to provide competitive electrical performance to the increasingly common applications operating at frequencies above 60 GHz. Specifically, this thesis presents the study, design, and implementation of reflectarray antennas, which incorporate liquid crystal (LC) materials to scan or reconfigure the beam electronically. From a general point of view, a liquid crystal can be defined as a material whose dielectric permittivity is variable and can be controlled with an external excitation, which usually corresponds with a quasi-static electric field (AC). By changing the dielectric permittivity at each cell that makes up the reflectarray, the phase shift on the aperture is controlled, so that a prescribed radiation pattern can be configured. Liquid Crystal-based reflectarrays have been chosen for several reasons. The first has to do with the advantages provided by the reflectarray antenna with respect to other high gain antennas, such as reflectors or phased arrays. The RF feeding in reflectarrays is achieved by using a common primary source (as in reflectors). This arrangement and the large number of degrees of freedom provided by the cells that make up the reflectarray (as in arrays), allow these antennas to provide a similar or even better electrical performance than other low profile antennas (reflectors and arrays), but assuming a more reduced cost and compactness. The second reason is the flexibility of the liquid crystal to be confined in an arbitrary geometry due to its fluidity (property of liquids). Therefore, the liquid crystal is able to adapt to a planar geometry so that it is one or more of the typical layers of this configuration. This simplifies drastically both the structure and manufacture of this type of antenna, even when compared with reconfigurable reflectarrays based on other technologies, such as diodes MEMS, etc. Therefore, the cost of developing this type of antenna is very small, which means that electrically large reconfigurable reflectarrays could be manufactured assuming low cost and greater productions. A paradigmatic example of a similar structure is the liquid crystal panel, which has already been commercialized successfully. The third reason lies in the fact that, at present, the liquid crystal is one of the few technologies capable of providing switching capabilities at frequencies above 60 GHz. In fact, the liquid crystal allows its permittivity to be switched in a wide range of frequencies, which are from DC to the visible spectrum, including microwaves and THz. Other technologies, such as ferroelectric materials, graphene or CMOS "on chip" technology also allow the beam to be switched at these frequencies. However, CMOS technology is expensive and is currently limited to frequencies below 150 GHz, and although ferroelectric materials or graphene can switch at higher frequencies and in a wider range, they have serious difficulties that make them immature. Ferroelectric materials involve the use of very high voltages to switch the material, making them unattractive, whereas the electromagnetic modelling of the graphene is still under discussion, so that the experimental results of devices based on this latter technology have not been reported yet. These three reasons make LC-based reflectarrays attractive for many applications that involve the use of electronically reconfigurable beams at frequencies beyond 60 GHz. Applications such as high resolution imaging radars, molecular spectroscopy, radiometers for atmospheric observation, or high frequency wireless communications (WiGig) are just some of them. This thesis is divided into three parts. In the first part, the most common properties of the liquid crystal materials are described, especially those exhibited in the nematic phase. The study is focused on the dielectric anisotropy (Ac) of uniaxial liquid crystals, which is defined as the difference between the parallel (e/7) and perpendicular (e±) permittivities: Ae = e,, - e±. This parameter allows the permittivity of a LC confined in an arbitrary volume at a certain biasing voltage to be described by solving a variational problem that involves both the electrostatic and elastic energies. Thus, the frequency dependence of (Ae) is also described and characterised. Note that an appropriate LC modelling is quite important to ensure enough accuracy in the phase shift provided by each cell that makes up the reflectarray, and therefore to achieve a good electrical performance at the antenna level. The second part of the thesis is focused on the design of resonant reflectarray cells based on liquid crystal. The reason why resonant cells have been chosen lies in the fact that they are able to provide enough phase range using the values of the dielectric anisotropy of the liquid crystals, which are typically small. Thus, the aim of this part is to investigate several reflectarray cell architectures capable of providing good electrical performance at the antenna level, which significantly improve the electrical performance of the cells reported in the literature. Similarly, another of the objectives is to develop a general tool to design these cells. To fulfill these objectives, the electrical yields of different types of resonant reflectarray elements are investigated, beginning from the simplest, which is made up of a single resonator and limits the state of the art. To overcome the electrical limitations of the single resonant cell, several elements consisting of multiple resonators are considered, which can be single-layer or multilayer. In a first step, the design procedure of these structures makes use of a conventional electromagnetic model which has been used in the literature, which considers that the liquid crystal behaves as homogeneous and isotropic materials whose permittivity varies between (e/7) y (e±). However, in this part of the thesis it is shown that the conventional modelling is not enough to describe the physical behaviour of the liquid crystal in reflectarray cells accurately. Therefore, a more accurate analysis and design procedure based on a more general model is proposed and developed, which defines the liquid crystal as an anisotropic three-dimensional inhomogeneous material. The design procedure is able to optimize multi-resonant cells efficiently to achieve good electrical performance in terms of bandwidth, phase range, losses, or sensitivity to the angle of incidence. The errors made when the conventional modelling (amplitude and phase) is considered have been also analysed for various cell geometries, by using measured results from several antenna prototypes made up of real liquid crystals at frequencies above 100 GHz. The measurements have been performed in a periodic environment using a quasi-optical bench, which has been designed especially for this purpose. One of these prototypes has been optimized to achieve a relatively large bandwidth (10%) at 100 GHz, low losses, a phase range of more than 360º, a low sensitivity to angle of incidence, and a low influence of the transversal inhomogeneity of the liquid crystal in the cell. The electrical yields of this prototype at the cell level improve those achieved by other elements reported in the literature, so that this prototype has been used in the last part of the thesis to perform several complete antennas for beam scanning applications. Finally, in this second part of the thesis, a novel strategy to characterise the macroscopic anisotropy using reflectarray cells is presented. The results in both RF and AC frequencies are compared with those obtained by other methods. The third part of the thesis consists on the study, design, manufacture and testing of LCbased reflectarray antennas in complex configurations. Note that the design procedure of a passive reflectarray antenna just consists on finding out the dimensions of the metallisations of each cell (which are used for phase control), using well-known optimization processes. However, in the case of reconfigurable reflectarrays based on liquid crystals, an additional step must be taken into account, which consists of accurately calculating the control voltages to be applied to each cell to configure the required phase-shift distribution on the surface of the antenna. Similarly, the structure to address the voltages at each cell and the control circuitry must be also considered. Therefore, the voltage synthesis is even more important than the design of the cell geometries (dimensions), since the voltages are directly related to the phase-shift. Several voltage synthesis procedures have been proposed in the state of the art, which are based on the experimental characterization of the phase/voltage curve. However, this characterization can be only carried out at a single angle of incidence and at certain cell dimensions, so that the synthesized voltages are different from those needed, thus giving rise to phase errors of more than 70°. Thus, the electrical yields of the LCreflectarrays reported in the literature are limited in terms of bandwidth, scanning range or side lobes level. In this last part of the thesis, a new voltage synthesis procedure has been defined and developed, which allows the required voltage to be calculated at each cell using simulations that take into account the particular dimensions of the cells, their angles of incidence, the frequency, and the AC biasing signal (frequency and waveform). The strategy is based on the modelling of each one of the permittivity states of the liquid crystal as an anisotropic substrate with longitudinal inhomogeneity (1D), or in certain cases, as an equivalent homogeneous tensor. The accuracy of both electromagnetic models is also discussed. The phase errors made by using the proposed voltage synthesis are better than 7º. In order to obtain an efficient tool to analyse and design the reflectarray, an electromagnetic analysis tool based on the Method of Moments in the spectral domain (SD-MoM) has also written and developed for anisotropic stratified media, which is used at each iteration of the voltage synthesis procedure. The voltage synthesis is also designed to minimize the effect of amplitude ripple on the radiation pattern, which is typical of reflectarrays made up of cells exhibiting high losses and represents a further advance in achieving a better antenna performance. To calculate the radiation patterns used in the synthesis procedure, an element-by-element analysis is assumed, which considers the local periodicity approach. Under this consideration, the use of a novel method is proposed, which avoids the limitation that the local periodicity imposes on the excitation. Once the appropriate strategy to calculate the voltages to be applied at each cell is developed, and once it is designed and manufactured both the structure to address the voltages to the antenna and the control circuits, two complete LC-based reflectarray antennas that operate at 100 GHz have been designed, manufactured and tested using the previously presented cells. The first prototype consists of a single offset reflectarray with beam scanning capabilities on one plane (elevation and azimuth). Although several LC-reflectarray antennas that provide 2-D scanning capabilities are also designed, and certain strategies to achieve the 2-D addressing of the voltage are proposed, the manufactured prototype addresses the voltages in one dimension in order to reduce the number of controls and manufacturing errors, and thereby validating the design tool. For an average aperture size (with a number of rows and columns of between 30 and 50 elements, which means a reflectarray with more than 900 cells), the single offset configuration provides an antenna gain of between 20 and 30 dBi and a large scanning range. The prototype tested at 100 GHz exhibits an electronically scanned beam in an angular range of 55º and 8% of bandwidth, in which the side lobe level (SLL) remains better than -13 dB. The maximum gain is 19.4 dBi. The electrical performance of the antenna is clearly an improvement on those achieved by other authors in the state of the art. The second prototype corresponds to a dual reflector antenna with a liquid crystal-based reflectarray used as a sub-reflector for beam scanning in one plane (azimuth or elevation). The main objective is to obtain a higher gain than that provided by the single offset configuration, but using a more compact architecture. In this case, a maximum gain of 35 dBi is achieved, although at the expense of reducing the scanning range to 12°, which is inherent in this type of structure. As a general statement, the voltage synthesis and the design procedure of the cells, jointly make up a complete, accurate and efficient design tool of reconfigurable reflectarray antennas based on liquid crystals. The tool has been validated by testing the previously mentioned prototypes at 100 GHz, which achieve something never reached before for this type of antenna: a competitive electrical performance, and an excellent prediction of the results. The design procedure is general and therefore can be used at any frequency for which the liquid crystal exhibits dielectric anisotropy. The two prototypes designed, manufactured and tested in this thesis are also some of the first antennas that currently operate at frequencies above 100 GHz. In fact, the dual reflector antenna is the first electronically scanned dual reflector antenna at frequencies above 60 GHz (the operation frequency is 100 GHz) with a gain greater than 25 dBi, being in turn the first dual-reflector antenna with a real reconfigurable sub-reflectarray. Finally, some improvements that should be still investigated to make these antennas commercially competitive are proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design, fabrication and measured results are presented for a reconfigurable reflectarray antenna based on liquid crystals (LC) which operates above 100 GHz. The antenna has been designed to provide beam scanning capabilities over a wide angular range, a large bandwidth and reduced Side-Lobe Level. Measured radiation patterns are in good agreement with simulations, and show that the antenna generates an electronically steerable beam in one plane over an angular range of 55º in the frequency band from 96 to 104 GHz. The Side Lobes Level is lower than -13 dB for all the scan angles and -18 dB is obtained over 16% of the scan range. The measured performance is significantly better than previously published results for this class of electronically tunable antenna, and moreover verifies the accuracy of the proposed procedure for LC modeling and antenna design.