40 resultados para laser properties

em Universidad Politécnica de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is being consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals and is being developed as a practical process amenable to production engineering. The main acknowledged advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Following a short description of the theoretical/computational and experimental methods developed by the authors for the predictive assessment and experimental implementation of LSP treatments, experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (specifically Al and Ti alloys) under different LSP irradiation conditions are presented. In particular, the analysis of the residual stress profiles obtained under different irradiation parameters and the evaluation of the corresponding induced surface properties as roughness and wear resistance are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Profiting by the increasing availability of laser sources delivering intensities above 10 9 W/cm 2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is being consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals and is being developed as a practical process amenable to production engineering. The main acknowledged advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Following a short description of the theoretical/computational and experimental methods developed by the authors for the predictive assessment and experimental implementation of LSP treatments, experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (specifically steels and Al and Ti alloys) under different LSP irradiation conditions are presented

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influence of nanosecond laser pulses applied by laser shock peening without absorbent coating (LSPwC) with a Q-switched Nd:YAG laser operating at a wavelength of λ = 1064 nm on 6082-T651 Al alloy has been investigated. The first portion of the present study assesses laser shock peening effect at two pulse densities on three-dimensional (3D) surface topography characteristics. In the second part of the study, the peening effect on surface texture orientation and micro-structure modification, i.e. the effect of surface craters due to plasma and shock waves, were investigated in both longitudinal (L) and transverse (T) directions of the laser-beam movement. In the final portion of the study, the changes of mechanical properties were evaluated with a residual stress profile and Vickers micro-hardness through depth variation in the near surface layer, whereas factorial design with a response surface methodology (RSM) was applied. The surface topographic and micro-structural effect of laser shock peening were characterised with optical microscopy, InfiniteFocus® microscopy and scanning electron microscopy (SEM). Residual stress evaluation based on a hole-drilling integral method confirmed higher compression at the near surface layer (33 μm) in the transverse direction (σmin) of laser-beam movement, i.e. − 407 ± 81 MPa and − 346 ± 124 MPa, after 900 and 2500 pulses/cm2, respectively. Moreover, RSM analysis of micro-hardness through depth distribution confirmed an increase at both pulse densities, whereas LSPwC-generated shock waves showed the impact effect of up to 800 μm below the surface. Furthermore, ANOVA results confirmed the insignificant influence of LSPwC treatment direction on micro-hardness distribution indicating essentially homogeneous conditions, in both L and T directions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Laser shock processing (LSP) is being increasingly applied as an effective technology for the improvement of metallic materials surface properties in different types of components as a means of enhancement of their corrosion and fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view) are presented in this paper. Concretely, follow-on experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (especially Al and Ti alloys) under different LSP irradiation conditions are presented along with a practical correlated analysis on the protective character of the residual stress profiles obtained under different irradiation strategies and the evaluation of the corresponding induced properties as material specific volume reduction at the surface, microhardness and wear resistance. Additional remarks on the improved character of the LSP technique over the traditional “shot peening” technique in what concerns depth of induced compressive residual stresses fields are also made through the paper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

•Introduction •Process Experimental Setup •Experimental Procedure •Experimental Results for Al2024 - T351, Ti6Al4V and AISI 316L - Surface Roughness and Compactation - Residual stresses - Tensile Strength - Fatigue Life •Discussion and Outlook - Prospects for technological applications of LSP

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Based on laser beam intensities above 109 W/cm2 with pulse energy of several Joules and duration of nanoseconds, Laser Shock Processing (LSP) is capable of inducing a surface compressive residual stress field. The paper presents experimental results showing the ability of LSP to improve the mechanical strength and cracking resistance of AA2024-T351 friction stir welded (FSW) joints. After introducing the FSW and LSP procedures, the results of microstructural analysis and micro-hardness are discussed. Video Image Correlation was used to measure the displacement and strain fields produced during tensile testing of flat specimens; the local and overall tensile behavior of native FSW joints vs. LSP treated were analyzed. Further, results of slow strain rate tensile testing of the FSW joints, native and LSP treated, performed in 3.5% NaCl solution are presented. The ability of LSP to improve the structural behavior of the FSW joints is underscored.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper analyzes the behavior of a neural processing unit based on the optical bistable properties of semiconductor laser amplifiers. A similar unit to the reported here was previously employed in the simulation of the mammalian retina. The main advantages of the present cell are its larger fan-out and the possibility of different responses according to the light wavelength impinging onto the cell. These properties allow to work with larger structures as well as to obtain different behaviors according to the light characteristics. This new approach gives a possible modeling closer to the real biological configurations. Moreover, a more detailed analysis of the basic cell internal behavior is reported

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Laser shock processing (LSP) is increasingly applied as an effective technology for the improvement of metallic materials mechanical properties in different types of components as a means of enhancement of their fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses fields into metallic components allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view) are presented in this paper. Concretely, experimental results on the residual stress profiles and associated mechanical properties modification successfully reached in typical materials under different LSP irradiation conditions are presented. In this case, the specific behavior of a widely used material in high reliability components (especially in nuclear and biomedical applications) as AISI 316L is analyzed, the effect of possible “in-service” thermal conditions on the relaxation of the LSP effects being specifically characterized. I.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Assessment of laser shock processing effects on mechanical resistance of thin dissimilar laser welded joints

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Directionally solidified Al2O3–Er3Al5O12–ZrO2 eutectic rods were processed using the laser floating zone method at growth rates of 25, 350and 750 mm/h to obtain microstructures with different domain size. The mechanical properties were investigated as a function of the processing rate. The hardness, 15.6 GPa, and the fracture toughness, 4 MPa m1/2, obtained from Vickers indentation at room temperature were practically independent of the size of the eutectic phases. However, the flexural strength increased as the domain size decreased, reaching outstanding strength values close to 3 GPa in the samples grown at 750 mm/h. A high retention of the flexural strength was observed up to 1500 K in the materials processed at 25 and 350 mm/h, while superplastic behaviour was observed at 1700 K in the eutectic rods solidified at the highest rate of 750 mm/h

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Laser shock processing (LSP) is increasingly applied as an effective technology for the improvement of metallic materials mechanical properties in different types of components as a means of enhancement of their fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses fields into metallic components allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view)are presented in this paper. Concretely, experimental results on the residual stress profiles and associated mechanical properties modification successfully reached in typical materials under different LSP irradiation conditions are presented. In this case, the specific behavior of a widely used material in high reliability components (especially in nuclear and biomedical applications) as AISI 316L is analyzed, the effect of possible “in-service” thermal conditions on the relaxation of the LSP effects being specifically characterized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents a consistent set of results showing the ability of Laser Shock Processing (LSP) in modifying the overall properties of the Friction Stir Welded (FSW) joints made of AA 2024-T351. Based on laser beam intensities above 109 W/cm2 with pulse energies of several Joules and pulses durations of nanoseconds, LSP is able of inducing a compression residual stress field, improving the wear and fatigue resistance by slowing crack propagation and stress corrosion cracking, but also improving the overall behaviour of the structure. After the FSW and LSP procedures are briefly presented, the results of micro-hardness measurements and of transverse tensile tests, together with the corrosion resistance of the native joints vs. LSP treated are discussed. The ability of LSP to generate compressive residual stresses and to improve the behaviour of the FSW joints is underscored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are several heat and mass diffusion problems which affect to the IFC chamber design. New simulation models and experiments are needed to take into account the extreme conditions due to ignition pulses and neutron flux

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eutectic rods of Al2O3–Er3Al5O12 were grown by directional solidification using the laser-heated floating zone method at rates in the range 25–1500 mm/h. Their microstructure and mechanical properties (hardness, toughness and strength) were investigated as a function of the growth rate. A homogeneous and interpenetrated microstructure was found in most cases, and interphase spacing decreased with growth rate following the Hunt–Jackson law. Hardness increased slightly as the interphase spacing decreased while toughness was low and independent of the microstructure. The rods presented very high bending strength as a result of the homogeneous microstructure, and their strength increased rapidly as the interphase spacing decreased, reaching a maximum of 2.7 GPa for the rods grown at 750 mm/h. The bending strength remained constant up to 1300 K and decreased above this temperature. The relationship between the microstructure and the mechanical properties was established from the analysis of the microstructure and of the fracture mechanisms

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The European HiPER project aims to demonstrate commercial viability of inertial fusion energy within the following two decades. This goal requires an extensive Research &Development program on materials for different applications (e.g., first wall, structural components and final optics). In this paper we will discuss our activities in the framework of HiPER to develop materials studies for the different areas of interest. The chamber first wall will have to withstand explosions of at least 100 MJ at a repetition rate of 5-10 Hz. If direct drive targets are used, a dry wall chamber operated in vacuum is preferable. In this situation the major threat for the wall stems from ions. For reasonably low chamber radius (5-10 m) new materials based on W and C are being investigated, e.g., engineered surfaces and nanostructured materials. Structural materials will be subject to high fluxes of neutrons leading to deleterious effects, such as, swelling. Low activation advanced steels as well as new nanostructured materials are being investigated. The final optics lenses will not survive the extreme ion irradiation pulses originated in the explosions. Therefore, mitigation strategies are being investigated. In addition, efforts are being carried out in understanding optimized conditions to minimize the loss of optical properties by neutron and gamma irradiation