16 resultados para knowledge acquisition

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge acquisition and model maintenance are key problems in knowledge engineering to improve the productivity in the development of intelligent systems. Although historically a number of technical solutions have been proposed in this area, the recent experience shows that there is still an important gap between the way end-users describe their expertise and the way intelligent systems represent knowledge. In this paper we propose an original way to cope with this problem based on electronic documents. We propose the concept of intelligent document processor as a tool that allows the end-user to read/write a document explaining how an intelligent system operates in such a way that, if the user changes the content of the document, the intelligent system will react to these changes. The paper presents the structure of such a document based on knowledge categories derived from the modern knowledge modeling methodologies together with a number of requirements to be understandable by end-users and problem solvers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a particular knowledge acquisition tool for the construction and maintenance of the knowledge model of an intelligent system for emergency management in the field of hydrology. This tool has been developed following an innovative approach directed to end-users non familiarized in computer oriented terminology. According to this approach, the tool is conceived as a document processor specialized in a particular domain (hydrology) in such a way that the whole knowledge model is viewed by the user as an electronic document. The paper first describes the characteristics of the knowledge model of the intelligent system and summarizes the problems that we found during the development and maintenance of such type of model. Then, the paper describes the KATS tool, a software application that we have designed to help in this task to be used by users who are not experts in computer programming. Finally, the paper shows a comparison between KATS and other approaches for knowledge acquisition.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tradicionalmente, el uso de técnicas de análisis de datos ha sido una de las principales vías para el descubrimiento de conocimiento oculto en grandes cantidades de datos, recopilados por expertos en diferentes dominios. Por otra parte, las técnicas de visualización también se han usado para mejorar y facilitar este proceso. Sin embargo, existen limitaciones serias en la obtención de conocimiento, ya que suele ser un proceso lento, tedioso y en muchas ocasiones infructífero, debido a la dificultad de las personas para comprender conjuntos de datos de grandes dimensiones. Otro gran inconveniente, pocas veces tenido en cuenta por los expertos que analizan grandes conjuntos de datos, es la degradación involuntaria a la que someten a los datos durante las tareas de análisis, previas a la obtención final de conclusiones. Por degradación quiere decirse que los datos pueden perder sus propiedades originales, y suele producirse por una reducción inapropiada de los datos, alterando así su naturaleza original y llevando en muchos casos a interpretaciones y conclusiones erróneas que podrían tener serias implicaciones. Además, este hecho adquiere una importancia trascendental cuando los datos pertenecen al dominio médico o biológico, y la vida de diferentes personas depende de esta toma final de decisiones, en algunas ocasiones llevada a cabo de forma inapropiada. Ésta es la motivación de la presente tesis, la cual propone un nuevo framework visual, llamado MedVir, que combina la potencia de técnicas avanzadas de visualización y minería de datos para tratar de dar solución a estos grandes inconvenientes existentes en el proceso de descubrimiento de información válida. El objetivo principal es hacer más fácil, comprensible, intuitivo y rápido el proceso de adquisición de conocimiento al que se enfrentan los expertos cuando trabajan con grandes conjuntos de datos en diferentes dominios. Para ello, en primer lugar, se lleva a cabo una fuerte disminución en el tamaño de los datos con el objetivo de facilitar al experto su manejo, y a la vez preservando intactas, en la medida de lo posible, sus propiedades originales. Después, se hace uso de efectivas técnicas de visualización para representar los datos obtenidos, permitiendo al experto interactuar de forma sencilla e intuitiva con los datos, llevar a cabo diferentes tareas de análisis de datos y así estimular visualmente su capacidad de comprensión. De este modo, el objetivo subyacente se basa en abstraer al experto, en la medida de lo posible, de la complejidad de sus datos originales para presentarle una versión más comprensible, que facilite y acelere la tarea final de descubrimiento de conocimiento. MedVir se ha aplicado satisfactoriamente, entre otros, al campo de la magnetoencefalografía (MEG), que consiste en la predicción en la rehabilitación de lesiones cerebrales traumáticas (Traumatic Brain Injury (TBI) rehabilitation prediction). Los resultados obtenidos demuestran la efectividad del framework a la hora de acelerar y facilitar el proceso de descubrimiento de conocimiento sobre conjuntos de datos reales. ABSTRACT Traditionally, the use of data analysis techniques has been one of the main ways of discovering knowledge hidden in large amounts of data, collected by experts in different domains. Moreover, visualization techniques have also been used to enhance and facilitate this process. However, there are serious limitations in the process of knowledge acquisition, as it is often a slow, tedious and many times fruitless process, due to the difficulty for human beings to understand large datasets. Another major drawback, rarely considered by experts that analyze large datasets, is the involuntary degradation to which they subject the data during analysis tasks, prior to obtaining the final conclusions. Degradation means that data can lose part of their original properties, and it is usually caused by improper data reduction, thereby altering their original nature and often leading to erroneous interpretations and conclusions that could have serious implications. Furthermore, this fact gains a trascendental importance when the data belong to medical or biological domain, and the lives of people depends on the final decision-making, which is sometimes conducted improperly. This is the motivation of this thesis, which proposes a new visual framework, called MedVir, which combines the power of advanced visualization techniques and data mining to try to solve these major problems existing in the process of discovery of valid information. Thus, the main objective is to facilitate and to make more understandable, intuitive and fast the process of knowledge acquisition that experts face when working with large datasets in different domains. To achieve this, first, a strong reduction in the size of the data is carried out in order to make the management of the data easier to the expert, while preserving intact, as far as possible, the original properties of the data. Then, effective visualization techniques are used to represent the obtained data, allowing the expert to interact easily and intuitively with the data, to carry out different data analysis tasks, and so visually stimulating their comprehension capacity. Therefore, the underlying objective is based on abstracting the expert, as far as possible, from the complexity of the original data to present him a more understandable version, thus facilitating and accelerating the task of knowledge discovery. MedVir has been succesfully applied to, among others, the field of magnetoencephalography (MEG), which consists in predicting the rehabilitation of Traumatic Brain Injury (TBI). The results obtained successfully demonstrate the effectiveness of the framework to accelerate and facilitate the process of knowledge discovery on real world datasets.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of the paper is to discuss the use of knowledge models to formulate general applications. First, the paper presents the recent evolution of the software field where increasing attention is paid to conceptual modeling. Then, the current state of knowledge modeling techniques is described where increased reliability is available through the modern knowledge acquisition techniques and supporting tools. The KSM (Knowledge Structure Manager) tool is described next. First, the concept of knowledge area is introduced as a building block where methods to perform a collection of tasks are included together with the bodies of knowledge providing the basic methods to perform the basic tasks. Then, the CONCEL language to define vocabularies of domains and the LINK language for methods formulation are introduced. Finally, the object oriented implementation of a knowledge area is described and a general methodology for application design and maintenance supported by KSM is proposed. To illustrate the concepts and methods, an example of system for intelligent traffic management in a road network is described. This example is followed by a proposal of generalization for reuse of the resulting architecture. Finally, some concluding comments are proposed about the feasibility of using the knowledge modeling tools and methods for general application design.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes the adaptation approach of reusable knowledge representation components used in the KSM environment for the formulation and operationalisation of structured knowledge models. Reusable knowledge representation components in KSM are called primitives of representation. A primitive of representation provides: (1) a knowledge representation formalism (2) a set of tasks that use this knowledge together with several problem-solving methods to carry out these tasks (3) a knowledge acquisition module that provides different services to acquire and validate this knowledge (4) an abstract terminology about the linguistic categories included in the representation language associated to the primitive. Primitives of representation usually are domain independent. A primitive of representation can be adapted to support knowledge in a given domain by importing concepts from this domain. The paper describes how this activity can be carried out by mean of a terminological importation. Informally, a terminological importation partially populates an abstract terminology with concepts taken from a given domain. The information provided by the importation can be used by the acquisition and validation facilities to constraint the classes of knowledge that can be described using the representation formalism according to the domain knowledge. KSM provides the LINK-S language to specify terminological importation from a domain terminology to an abstract one. These terminologies are described in KSM by mean of the CONCEL language. Terminological importation is used to adapt reusable primitives of representation in order to increase the usability degree of such components in these domains. In addition, two primitives of representation can share a common vocabulary by importing common domain CONCEL terminologies (conceptual vocabularies). It is a necessary condition to make possible the interoperability between different, heterogeneous knowledge representation components in the framework of complex knowledge - based architectures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article describes a knowledge-based method for generating multimedia descriptions that summarize the behavior of dynamic systems. We designed this method for users who monitor the behavior of a dynamic system with the help of sensor networks and make decisions according to prefixed management goals. Our method generates presentations using different modes such as text in natural language, 2D graphics and 3D animations. The method uses a qualitative representation of the dynamic system based on hierarchies of components and causal influences. The method includes an abstraction generator that uses the system representation to find and aggregate relevant data at an appropriate level of abstraction. In addition, the method includes a hierarchical planner to generate a presentation using a model with dis- course patterns. Our method provides an efficient and flexible solution to generate concise and adapted multimedia presentations that summarize thousands of time series. It is general to be adapted to differ- ent dynamic systems with acceptable knowledge acquisition effort by reusing and adapting intuitive rep- resentations. We validated our method and evaluated its practical utility by developing several models for an application that worked in continuous real time operation for more than 1 year, summarizing sen- sor data of a national hydrologic information system in Spain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The worldwide "hyper-connection" of any object around us is the challenge that promises to cover the paradigm of the Internet of Things. If the Internet has colonized the daily life of more than 2000 million1 people around the globe, the Internet of Things faces of connecting more than 100000 million2 "things" by 2020. The underlying Internet of Things’ technologies are the cornerstone that promises to solve interrelated global problems such as exponential population growth, energy management in cities, and environmental sustainability in the average and long term. On the one hand, this Project has the goal of knowledge acquisition about prototyping technologies available in the market for the Internet of Things. On the other hand, the Project focuses on the development of a system for devices management within a Wireless Sensor and Actuator Network to offer some services accessible from the Internet. To accomplish the objectives, the Project will begin with a detailed analysis of various “open source” hardware platforms to encourage creative development of applications, and automatically extract information from the environment around them for transmission to external systems. In addition, web platforms that enable mass storage with the philosophy of the Internet of Things will be studied. The project will culminate in the proposal and specification of a service-oriented software architecture for embedded systems that allows communication between devices on the network, and the data transmission to external systems. Furthermore, it abstracts the complexities of hardware to application developers. RESUMEN. La “hiper-conexión” a nivel mundial de cualquier objeto que nos rodea es el desafío al que promete dar cobertura el paradigma de la Internet de las Cosas. Si la Internet ha colonizado el día a día de más de 2000 millones1 de personas en todo el planeta, la Internet de las Cosas plantea el reto de conectar a más de 100000 millones2 de “cosas” para el año 2020. Las tecnologías subyacentes de la Internet de las Cosas son la piedra angular que prometen dar solución a problemas globales interrelacionados como el crecimiento exponencial de la población, la gestión de la energía en las ciudades o la sostenibilidad del medioambiente a largo plazo. Este Proyecto Fin de Carrera tiene como principales objetivos por un lado, la adquisición de conocimientos acerca de las tecnologías para prototipos disponibles en el mercado para la Internet de las Cosas, y por otro lado el desarrollo de un sistema para la gestión de dispositivos de una red inalámbrica de sensores que ofrezcan unos servicios accesibles desde la Internet. Con el fin de abordar los objetivos marcados, el proyecto comenzará con un análisis detallado de varias plataformas hardware de tipo “open source” que estimulen el desarrollo creativo de aplicaciones y que permitan extraer de forma automática información del medio que les rodea para transmitirlo a sistemas externos para su posterior procesamiento. Por otro lado, se estudiarán plataformas web identificadas con la filosofía de la Internet de las Cosas que permitan el almacenamiento masivo de datos que diferentes plataformas hardware transfieren a través de la Internet. El Proyecto culminará con la propuesta y la especificación una arquitectura software orientada a servicios para sistemas empotrados que permita la comunicación entre los dispositivos de la red y la transmisión de datos a sistemas externos, así como facilitar el desarrollo de aplicaciones a los programadores mediante la abstracción de la complejidad del hardware.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The project arises from the need to develop improved teaching methodologies in field of the mechanics of continuous media. The objective is to offer the student a learning process to acquire the necessary theoretical knowledge, cognitive skills and the responsibility and autonomy to professional development in this area. Traditionally the teaching of the concepts of these subjects was performed through lectures and laboratory practice. During these lessons the students attitude was usually passive, and therefore their effectiveness was poor. The proposed methodology has already been successfully employed in universities like University Bochum, Germany, University the South Australia and aims to improve the effectiveness of knowledge acquisition through use by the student of a virtual laboratory. This laboratory allows to adapt the curricula and learning techniques to the European Higher Education and improve current learning processes in the University School of Public Works Engineers -EUITOP- of the Technical University of Madrid -UPM-, due there are not laboratories in this specialization. The virtual space is created using a software platform built on OpenSim, manages 3D virtual worlds, and, language LSL -Linden Scripting Language-, which imprints specific powers to objects. The student or user can access this virtual world through their avatar -your character in the virtual world- and can perform practices within the space created for the purpose, at any time, just with computer with internet access and viewfinder. The virtual laboratory has three partitions. The virtual meeting rooms, where the avatar can interact with peers, solve problems and exchange existing documentation in the virtual library. The interactive game room, where the avatar is has to resolve a number of issues in time. And the video room where students can watch instructional videos and receive group lessons. Each audiovisual interactive element is accompanied by explanations framing it within the area of knowledge and enables students to begin to acquire a vocabulary and practice of the profession for which they are being formed. Plane elasticity concepts are introduced from the tension and compression testing of test pieces of steel and concrete. The behavior of reticulated and articulated structures is reinforced by some interactive games and concepts of tension, compression, local and global buckling will by tests to break articulated structures. Pure bending concepts, simple and composite torsion will be studied by observing a flexible specimen. Earthquake resistant design of buildings will be checked by a laboratory test video.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract This paper presents a new method to extract knowledge from existing data sets, that is, to extract symbolic rules using the weights of an Artificial Neural Network. The method has been applied to a neural network with special architecture named Enhanced Neural Network (ENN). This architecture improves the results that have been obtained with multilayer perceptron (MLP). The relationship among the knowledge stored in the weights, the performance of the network and the new implemented algorithm to acquire rules from the weights is explained. The method itself gives a model to follow in the knowledge acquisition with ENN.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an approach to compare two types of data, subjective data (Polarity of Pan American Games 2011 event by country) and objective data (the number of medals won by each participating country), based on the Pearson corre- lation. When dealing with events described by people, knowledge acquisition is difficult because their structure is heterogeneous and subjective. A first step towards knowing the polarity of the information provided by people consists in automatically classifying the posts into clusters according to their polarity. The authors carried out a set of experiments using a corpus that consists of 5600 posts extracted from 168 Internet resources related to a specific event: the 2011 Pan American games. The approach is based on four components: a crawler, a filter, a synthesizer and a polarity analyzer. The PanAmerican approach automatically classifies the polarity of the event into clusters with the following results: 588 positive, 336 neutral, and 76 negative. Our work found out that the polarity of the content produced was strongly influenced by the results of the event with a correlation of .74. Thus, it is possible to conclude that the polarity of content is strongly affected by the results of the event. Finally, the accuracy of the PanAmerican approach is: .87, .90, and .80 according to the precision of the three classes of polarity evaluated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En las últimas dos décadas, se ha puesto de relieve la importancia de los procesos de adquisición y difusión del conocimiento dentro de las empresas, y por consiguiente el estudio de estos procesos y la implementación de tecnologías que los faciliten ha sido un tema que ha despertado un creciente interés en la comunidad científica. Con el fin de facilitar y optimizar la adquisición y la difusión del conocimiento, las organizaciones jerárquicas han evolucionado hacia una configuración más plana, con estructuras en red que resulten más ágiles, disminuyendo la dependencia de una autoridad centralizada, y constituyendo organizaciones orientadas a trabajar en equipo. Al mismo tiempo, se ha producido un rápido desarrollo de las herramientas de colaboración Web 2.0, tales como blogs y wikis. Estas herramientas de colaboración se caracterizan por una importante componente social, y pueden alcanzar todo su potencial cuando se despliegan en las estructuras organizacionales planas. La Web 2.0 aparece como un concepto enfrentado al conjunto de tecnologías que existían a finales de los 90s basadas en sitios web, y se basa en la participación de los propios usuarios. Empresas del Fortune 500 –HP, IBM, Xerox, Cisco– las adoptan de inmediato, aunque no hay unanimidad sobre su utilidad real ni sobre cómo medirla. Esto se debe en parte a que no se entienden bien los factores que llevan a los empleados a adoptarlas, lo que ha llevado a fracasos en la implantación debido a la existencia de algunas barreras. Dada esta situación, y ante las ventajas teóricas que tienen estas herramientas de colaboración Web 2.0 para las empresas, los directivos de éstas y la comunidad científica muestran un interés creciente en conocer la respuesta a la pregunta: ¿cuáles son los factores que contribuyen a que los empleados de las empresas adopten estas herramientas Web 2.0 para colaborar? La respuesta a esta pregunta es compleja ya que se trata de herramientas relativamente nuevas en el contexto empresarial mediante las cuales se puede llevar a cabo la gestión del conocimiento en lugar del manejo de la información. El planteamiento que se ha llevado a cabo en este trabajo para dar respuesta a esta pregunta es la aplicación de los modelos de adopción tecnológica, que se basan en las percepciones de los individuos sobre diferentes aspectos relacionados con el uso de la tecnología. Bajo este enfoque, este trabajo tiene como objetivo principal el estudio de los factores que influyen en la adopción de blogs y wikis en empresas, mediante un modelo predictivo, teórico y unificado, de adopción tecnológica, con un planteamiento holístico a partir de la literatura de los modelos de adopción tecnológica y de las particularidades que presentan las herramientas bajo estudio y en el contexto especifico. Este modelo teórico permitirá determinar aquellos factores que predicen la intención de uso de las herramientas y el uso real de las mismas. El trabajo de investigación científica se estructura en cinco partes: introducción al tema de investigación, desarrollo del marco teórico, diseño del trabajo de investigación, análisis empírico, y elaboración de conclusiones. Desde el punto de vista de la estructura de la memoria de la tesis, las cinco partes mencionadas se desarrollan de forma secuencial a lo largo de siete capítulos, correspondiendo la primera parte al capítulo 1, la segunda a los capítulos 2 y 3, la tercera parte a los capítulos 4 y 5, la cuarta parte al capítulo 6, y la quinta y última parte al capítulo 7. El contenido del capítulo 1 se centra en el planteamiento del problema de investigación así como en los objetivos, principal y secundarios, que se pretenden cumplir a lo largo del trabajo. Así mismo, se expondrá el concepto de colaboración y su encaje con las herramientas colaborativas Web 2.0 que se plantean en la investigación y una introducción a los modelos de adopción tecnológica. A continuación se expone la justificación de la investigación, los objetivos de la misma y el plan de trabajo para su elaboración. Una vez introducido el tema de investigación, en el capítulo 2 se lleva a cabo una revisión de la evolución de los principales modelos de adopción tecnológica existentes (IDT, TRA, SCT, TPB, DTPB, C-TAM-TPB, UTAUT, UTAUT2), dando cuenta de sus fundamentos y factores empleados. Sobre la base de los modelos de adopción tecnológica expuestos en el capítulo 2, en el capítulo 3 se estudian los factores que se han expuesto en el capítulo 2 pero adaptados al contexto de las herramientas colaborativas Web 2.0. Con el fin de facilitar la comprensión del modelo final, los factores se agrupan en cuatro tipos: tecnológicos, de control, socio-normativos y otros específicos de las herramientas colaborativas. En el capítulo 4 se lleva a cabo la relación de los factores que son más apropiados para estudiar la adopción de las herramientas colaborativas y se define un modelo que especifica las relaciones entre los diferentes factores. Estas relaciones finalmente se convertirán en hipótesis de trabajo, y que habrá que contrastar mediante el estudio empírico. A lo largo del capítulo 5 se especifican las características del trabajo empírico que se lleva a cabo para contrastar las hipótesis que se habían enunciado en el capítulo 4. La naturaleza de la investigación es de carácter social, de tipo exploratorio, y se basa en un estudio empírico cuantitativo cuyo análisis se llevará a cabo mediante técnicas de análisis multivariante. En este capítulo se describe la construcción de las escalas del instrumento de medida, la metodología de recogida de datos, y posteriormente se presenta un análisis detallado de la población muestral, así como la comprobación de la existencia o no del sesgo atribuible al método de medida, lo que se denomina sesgo de método común (en inglés, Common Method Bias). El contenido del capítulo 6 corresponde al análisis de resultados, aunque previamente se expone la técnica estadística empleada, PLS-SEM, como herramienta de análisis multivariante con capacidad de análisis predictivo, así como la metodología empleada para validar el modelo de medida y el modelo estructural, los requisitos que debe cumplir la muestra, y los umbrales de los parámetros considerados. En la segunda parte del capítulo 6 se lleva a cabo el análisis empírico de los datos correspondientes a las dos muestras, una para blogs y otra para wikis, con el fin de validar las hipótesis de investigación planteadas en el capítulo 4. Finalmente, en el capítulo 7 se revisa el grado de cumplimiento de los objetivos planteados en el capítulo 1 y se presentan las contribuciones teóricas, metodológicas y prácticas derivadas del trabajo realizado. A continuación se exponen las conclusiones generales y detalladas por cada grupo de factores, así como las recomendaciones prácticas que se pueden extraer para orientar la implantación de estas herramientas en situaciones reales. Como parte final del capítulo se incluyen las limitaciones del estudio y se sugiere una serie de posibles líneas de trabajo futuras de interés, junto con los resultados de investigación parciales que se han obtenido durante el tiempo que ha durado la investigación. ABSTRACT In the last two decades, the relevance of knowledge acquisition and dissemination processes has been highlighted and consequently, the study of these processes and the implementation of the technologies that make them possible has generated growing interest in the scientific community. In order to ease and optimize knowledge acquisition and dissemination, hierarchical organizations have evolved to a more horizontal configuration with more agile net structures, decreasing the dependence of a centralized authority, and building team-working oriented organizations. At the same time, Web 2.0 collaboration tools such as blogs and wikis have quickly developed. These collaboration tools are characterized by a strong social component and can reach their full potential when they are deployed in horizontal organization structures. Web 2.0, based on user participation, arises as a concept to challenge the existing technologies of the 90’s which were based on websites. Fortune 500 companies – HP, IBM, Xerox, Cisco- adopted the concept immediately even though there was no unanimity about its real usefulness or how it could be measured. This is partly due to the fact that the factors that make the drivers for employees to adopt these tools are not properly understood, consequently leading to implementation failure due to the existence of certain barriers. Given this situation, and faced with theoretical advantages that these Web 2.0 collaboration tools seem to have for companies, managers and the scientific community are showing an increasing interest in answering the following question: Which factors contribute to the decision of the employees of a company to adopt the Web 2.0 tools for collaborative purposes? The answer is complex since these tools are relatively new in business environments. These tools allow us to move from an information Management approach to Knowledge Management. In order to answer this question, the chosen approach involves the application of technology adoption models, all of them based on the individual’s perception of the different aspects related to technology usage. From this perspective, this thesis’ main objective is to study the factors influencing the adoption of blogs and wikis in a company. This is done by using a unified and theoretical predictive model of technological adoption with a holistic approach that is based on literature of technological adoption models and the particularities that these tools presented under study and in a specific context. This theoretical model will allow us to determine the factors that predict the intended use of these tools and their real usage. The scientific research is structured in five parts: Introduction to the research subject, development of the theoretical framework, research work design, empirical analysis and drawing the final conclusions. This thesis develops the five aforementioned parts sequentially thorough seven chapters; part one (chapter one), part two (chapters two and three), part three (chapters four and five), parte four (chapters six) and finally part five (chapter seven). The first chapter is focused on the research problem statement and the objectives of the thesis, intended to be reached during the project. Likewise, the concept of collaboration and its link with the Web 2.0 collaborative tools is discussed as well as an introduction to the technology adoption models. Finally we explain the planning to carry out the research and get the proposed results. After introducing the research topic, the second chapter carries out a review of the evolution of the main existing technology adoption models (IDT, TRA, SCT, TPB, DTPB, C-TAM-TPB, UTAUT, UTAUT2), highlighting its foundations and factors used. Based on technology adoption models set out in chapter 2, the third chapter deals with the factors which have been discussed previously in chapter 2, but adapted to the context of Web 2.0 collaborative tools under study, blogs and wikis. In order to better understand the final model, the factors are grouped into four types: technological factors, control factors, social-normative factors and other specific factors related to the collaborative tools. The first part of chapter 4 covers the analysis of the factors which are more relevant to study the adoption of collaborative tools, and the second part proceeds with the theoretical model which specifies the relationship between the different factors taken into consideration. These relationships will become specific hypotheses that will be tested by the empirical study. Throughout chapter 5 we cover the characteristics of the empirical study used to test the research hypotheses which were set out in chapter 4. The nature of research is social, exploratory, and it is based on a quantitative empirical study whose analysis is carried out using multivariate analysis techniques. The second part of this chapter includes the description of the scales of the measuring instrument; the methodology for data gathering, the detailed analysis of the sample, and finally the existence of bias attributable to the measurement method, the "Bias Common Method" is checked. The first part of chapter 6 corresponds to the analysis of results. The statistical technique employed (PLS-SEM) is previously explained as a tool of multivariate analysis, capable of carrying out predictive analysis, and as the appropriate methodology used to validate the model in a two-stages analysis, the measurement model and the structural model. Futhermore, it is necessary to check the requirements to be met by the sample and the thresholds of the parameters taken into account. In the second part of chapter 6 an empirical analysis of the data is performed for the two samples, one for blogs and the other for wikis, in order to validate the research hypothesis proposed in chapter 4. Finally, in chapter 7 the fulfillment level of the objectives raised in chapter 1 is reviewed and the theoretical, methodological and practical conclusions derived from the results of the study are presented. Next, we cover the general conclusions, detailing for each group of factors including practical recommendations that can be drawn to guide implementation of these tools in real situations in companies. As a final part of the chapter the limitations of the study are included and a number of potential future researches suggested, along with research partial results which have been obtained thorough the research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La diabetes mellitus es un trastorno en la metabolización de los carbohidratos, caracterizado por la nula o insuficiente segregación de insulina (hormona producida por el páncreas), como resultado del mal funcionamiento de la parte endocrina del páncreas, o de una creciente resistencia del organismo a esta hormona. Esto implica, que tras el proceso digestivo, los alimentos que ingerimos se transforman en otros compuestos químicos más pequeños mediante los tejidos exocrinos. La ausencia o poca efectividad de esta hormona polipéptida, no permite metabolizar los carbohidratos ingeridos provocando dos consecuencias: Aumento de la concentración de glucosa en sangre, ya que las células no pueden metabolizarla; consumo de ácidos grasos mediante el hígado, liberando cuerpos cetónicos para aportar la energía a las células. Esta situación expone al enfermo crónico, a una concentración de glucosa en sangre muy elevada, denominado hiperglucemia, la cual puede producir a medio o largo múltiples problemas médicos: oftalmológicos, renales, cardiovasculares, cerebrovasculares, neurológicos… La diabetes representa un gran problema de salud pública y es la enfermedad más común en los países desarrollados por varios factores como la obesidad, la vida sedentaria, que facilitan la aparición de esta enfermedad. Mediante el presente proyecto trabajaremos con los datos de experimentación clínica de pacientes con diabetes de tipo 1, enfermedad autoinmune en la que son destruidas las células beta del páncreas (productoras de insulina) resultando necesaria la administración de insulina exógena. Dicho esto, el paciente con diabetes tipo 1 deberá seguir un tratamiento con insulina administrada por la vía subcutánea, adaptado a sus necesidades metabólicas y a sus hábitos de vida. Para abordar esta situación de regulación del control metabólico del enfermo, mediante una terapia de insulina, no serviremos del proyecto “Páncreas Endocrino Artificial” (PEA), el cual consta de una bomba de infusión de insulina, un sensor continuo de glucosa, y un algoritmo de control en lazo cerrado. El objetivo principal del PEA es aportar al paciente precisión, eficacia y seguridad en cuanto a la normalización del control glucémico y reducción del riesgo de hipoglucemias. El PEA se instala mediante vía subcutánea, por lo que, el retardo introducido por la acción de la insulina, el retardo de la medida de glucosa, así como los errores introducidos por los sensores continuos de glucosa cuando, se descalibran dificultando el empleo de un algoritmo de control. Llegados a este punto debemos modelar la glucosa del paciente mediante sistemas predictivos. Un modelo, es todo aquel elemento que nos permita predecir el comportamiento de un sistema mediante la introducción de variables de entrada. De este modo lo que conseguimos, es una predicción de los estados futuros en los que se puede encontrar la glucosa del paciente, sirviéndonos de variables de entrada de insulina, ingesta y glucosa ya conocidas, por ser las sucedidas con anterioridad en el tiempo. Cuando empleamos el predictor de glucosa, utilizando parámetros obtenidos en tiempo real, el controlador es capaz de indicar el nivel futuro de la glucosa para la toma de decisones del controlador CL. Los predictores que se están empleando actualmente en el PEA no están funcionando correctamente por la cantidad de información y variables que debe de manejar. Data Mining, también referenciado como Descubrimiento del Conocimiento en Bases de Datos (Knowledge Discovery in Databases o KDD), ha sido definida como el proceso de extracción no trivial de información implícita, previamente desconocida y potencialmente útil. Todo ello, sirviéndonos las siguientes fases del proceso de extracción del conocimiento: selección de datos, pre-procesado, transformación, minería de datos, interpretación de los resultados, evaluación y obtención del conocimiento. Con todo este proceso buscamos generar un único modelo insulina glucosa que se ajuste de forma individual a cada paciente y sea capaz, al mismo tiempo, de predecir los estados futuros glucosa con cálculos en tiempo real, a través de unos parámetros introducidos. Este trabajo busca extraer la información contenida en una base de datos de pacientes diabéticos tipo 1 obtenidos a partir de la experimentación clínica. Para ello emplearemos técnicas de Data Mining. Para la consecución del objetivo implícito a este proyecto hemos procedido a implementar una interfaz gráfica que nos guía a través del proceso del KDD (con información gráfica y estadística) de cada punto del proceso. En lo que respecta a la parte de la minería de datos, nos hemos servido de la denominada herramienta de WEKA, en la que a través de Java controlamos todas sus funciones, para implementarlas por medio del programa creado. Otorgando finalmente, una mayor potencialidad al proyecto con la posibilidad de implementar el servicio de los dispositivos Android por la potencial capacidad de portar el código. Mediante estos dispositivos y lo expuesto en el proyecto se podrían implementar o incluso crear nuevas aplicaciones novedosas y muy útiles para este campo. Como conclusión del proyecto, y tras un exhaustivo análisis de los resultados obtenidos, podemos apreciar como logramos obtener el modelo insulina-glucosa de cada paciente. ABSTRACT. The diabetes mellitus is a metabolic disorder, characterized by the low or none insulin production (a hormone produced by the pancreas), as a result of the malfunctioning of the endocrine pancreas part or by an increasing resistance of the organism to this hormone. This implies that, after the digestive process, the food we consume is transformed into smaller chemical compounds, through the exocrine tissues. The absence or limited effectiveness of this polypeptide hormone, does not allow to metabolize the ingested carbohydrates provoking two consequences: Increase of the glucose concentration in blood, as the cells are unable to metabolize it; fatty acid intake through the liver, releasing ketone bodies to provide energy to the cells. This situation exposes the chronic patient to high blood glucose levels, named hyperglycemia, which may cause in the medium or long term multiple medical problems: ophthalmological, renal, cardiovascular, cerebrum-vascular, neurological … The diabetes represents a great public health problem and is the most common disease in the developed countries, by several factors such as the obesity or sedentary life, which facilitate the appearance of this disease. Through this project we will work with clinical experimentation data of patients with diabetes of type 1, autoimmune disease in which beta cells of the pancreas (producers of insulin) are destroyed resulting necessary the exogenous insulin administration. That said, the patient with diabetes type 1 will have to follow a treatment with insulin, administered by the subcutaneous route, adapted to his metabolic needs and to his life habits. To deal with this situation of metabolic control regulation of the patient, through an insulin therapy, we shall be using the “Endocrine Artificial Pancreas " (PEA), which consists of a bomb of insulin infusion, a constant glucose sensor, and a control algorithm in closed bow. The principal aim of the PEA is providing the patient precision, efficiency and safety regarding the normalization of the glycemic control and hypoglycemia risk reduction". The PEA establishes through subcutaneous route, consequently, the delay introduced by the insulin action, the delay of the glucose measure, as well as the mistakes introduced by the constant glucose sensors when, decalibrate, impede the employment of an algorithm of control. At this stage we must shape the patient glucose levels through predictive systems. A model is all that element or set of elements which will allow us to predict the behavior of a system by introducing input variables. Thus what we obtain, is a prediction of the future stages in which it is possible to find the patient glucose level, being served of input insulin, ingestion and glucose variables already known, for being the ones happened previously in the time. When we use the glucose predictor, using obtained real time parameters, the controller is capable of indicating the future level of the glucose for the decision capture CL controller. The predictors that are being used nowadays in the PEA are not working correctly for the amount of information and variables that it need to handle. Data Mining, also indexed as Knowledge Discovery in Databases or KDD, has been defined as the not trivial extraction process of implicit information, previously unknown and potentially useful. All this, using the following phases of the knowledge extraction process: selection of information, pre- processing, transformation, data mining, results interpretation, evaluation and knowledge acquisition. With all this process we seek to generate the unique insulin glucose model that adjusts individually and in a personalized way for each patient form and being capable, at the same time, of predicting the future conditions with real time calculations, across few input parameters. This project of end of grade seeks to extract the information contained in a database of type 1 diabetics patients, obtained from clinical experimentation. For it, we will use technologies of Data Mining. For the attainment of the aim implicit to this project we have proceeded to implement a graphical interface that will guide us across the process of the KDD (with graphical and statistical information) of every point of the process. Regarding the data mining part, we have been served by a tool called WEKA's tool called, in which across Java, we control all of its functions to implement them by means of the created program. Finally granting a higher potential to the project with the possibility of implementing the service for Android devices, porting the code. Through these devices and what has been exposed in the project they might help or even create new and very useful applications for this field. As a conclusion of the project, and after an exhaustive analysis of the obtained results, we can show how we achieve to obtain the insulin–glucose model for each patient.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we want to point out, by means of a case study, the importance of incorporating some knowledge engineering techniques to the processes of software engineering. Precisely, we are referring to the knowledge eduction techniques. We know the difficulty of requirements acquisition and its importance to minimise the risks of a software project, both in the development phase and in the maintenance phase. To capture the functional requirements use cases are generally used. However, as we will show in this paper, this technique is insufficient when the problem domain knowledge is only in the "experts? mind". In this situation, the combination of the use case with eduction techniques, in every development phase, will let us to discover the correct requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a comparison of acquisition models related to decision analysis of IT supplier selection. The main standards are: Capability Maturity Model Integration for Acquisition (CMMI-ACQ), ISO / IEC 12207 Information Technology / Software Life Cycle Processes, IEEE 1062 Recommended Practice for Software Acquisition, the IT Infrastructure Library (ITIL) and the Project Management Body of Knowledge (PMBOK) guide. The objective of this paper is to compare the previous models to find the advantages and disadvantages of them for the future development of a decision model for IT supplier selection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important part of human intelligence, both historically and operationally, is our ability to communicate. We learn how to communicate, and maintain our communicative skills, in a society of communicators – a highly effective way to reach and maintain proficiency in this complex skill. Principles that might allow artificial agents to learn language this way are in completely known at present – the multi-dimensional nature of socio-communicative skills are beyond every machine learning framework so far proposed. Our work begins to address the challenge of proposing a way for observation-based machine learning of natural language and communication. Our framework can learn complex communicative skills with minimal up-front knowledge. The system learns by incrementally producing predictive models of causal relationships in observed data, guided by goal-inference and reasoning using forward-inverse models. We present results from two experiments where our S1 agent learns human communication by observing two humans interacting in a realtime TV-style interview, using multimodal communicative gesture and situated language to talk about recycling of various materials and objects. S1 can learn multimodal complex language and multimodal communicative acts, a vocabulary of 100 words forming natural sentences with relatively complex sentence structure, including manual deictic reference and anaphora. S1 is seeded only with high-level information about goals of the interviewer and interviewee, and a small ontology; no grammar or other information is provided to S1 a priori. The agent learns the pragmatics, semantics, and syntax of complex utterances spoken and gestures from scratch, by observing the humans compare and contrast the cost and pollution related to recycling aluminum cans, glass bottles, newspaper, plastic, and wood. After 20 hours of observation S1 can perform an unscripted TV interview with a human, in the same style, without making mistakes.