2 resultados para k(0)-NAA

em Universidad Politécnica de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

After an experimental fire in steep shrub land in a temperate–humid region (north-west Spain), the effects of two post-fire stabilisation treatments (grass seeding and straw mulching) on the chemical properties of eroded sediments,and the amount of nutrients lost with them, we reevaluated relative to control burnt soil, over a period of 13 months. Total C and N concentrations, and d 13 C, indicated that sediments were mainly contributed by charred plant and litter material. The highest concentrations of extractable base cations in the sediments occurred during the first 3 months following fire, especially for Na and K. As treatments had little or no effect on nutrient concentration in sediments, differences in nutrient losses were due to the 10-fold lower sediment production in mulching compared with other treatments. In control and seeding treatments, the accumulated amounts of nutrients lost with sediments were 989–1028kgha 1 (C), 77kgha 1 (N), 1.9–2.4kgha 1 (Ca), 0.9–1.1kgha 1 (Mg), 0.48–0.55kgha 1 (NH 4 þ –N), 0.39–0.56kgha 1 (K), 0.19–0.34kgha 1 (Na) and , 0.1kgha 1 (P and NO 3 –N) . These values accounted for 22–25% (total C and N) and 5–12% (NH 4 þ –N, Ca, P and Mg) of available nutrients in ash, and 1.0–2.4% of those in ash þ topsoil. As nutrient and sediment losses were strongly correlated, the reduction of the latter by mulching application leads to an effective decrease of post-fire nutrient losses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neutron diffraction data of DyCrO4 oxide, prepared at 4 GPa and 833 K from the ambient pressure zircon-type, reveal that crystallize with the scheelite-type structure, space group I41/a. Accompanying this structural phase transition induced by pressure the magnetic properties change dramatically from ferromagnetism in the case of zircon to antiferromagnetism for the scheelite polymorph with a T N= 19 K. The analysis of the neutron diffraction data obtained at 1.2 K has been used to determine the magnetic structure of this DyCrO4-scheelite oxide which can be described with a k = [0, 0, 0] as propagation vector, where the Dy and Cr moments are lying in the ab-plane of the scheelite structure. The ordered magnetic moments are 10 µB and 1 µB for Dy+3 and Cr+5 respectively