3 resultados para ion-neutral reactions, astrochemistry, interstellar medium
em Universidad Politécnica de Madrid
Resumo:
An efficient approach for the simulation of ion scattering from solids is proposed. For every encountered atom, we take multiple samples of its thermal displacements among those which result in scattering with high probability to finally reach the detector. As a result, the detector is illuminated by intensive “showers,” where each event of detection must be weighted according to the actual probability of the atom displacement. The computational cost of such simulation is orders of magnitude lower than in the direct approach, and a comprehensive analysis of multiple and plural scattering effects becomes possible. We use this method for two purposes. First, the accuracy of the approximate approaches, developed mainly for ion-beam structural analysis, is verified. Second, the possibility to reproduce a wide class of experimental conditions is used to analyze some basic features of ion-solid collisions: the role of double violent collisions in low-energy ion scattering; the origin of the “surface peak” in scattering from amorphous samples; the low-energy tail in the energy spectra of scattered medium-energy ions due to plural scattering; and the degradation of blocking patterns in two-dimensional angular distributions with increasing depth of scattering. As an example of simulation for ions of MeV energies, we verify the time reversibility for channeling and blocking of 1-MeV protons in a W crystal. The possibilities of analysis that our approach offers may be very useful for various applications, in particular, for structural analysis with atomic resolution.
Resumo:
The refractive index changes induced by swift ion-beam irradiation in silica have been measured either by spectroscopic ellipsometry or through the effective indices of the optical modes propagating through the irradiated structure. The optical response has been analyzed by considering an effective homogeneous medium to simulate the nanostructured irradiated system consisting of cylindrical tracks, associated to the ion impacts, embedded into a virgin material. The role of both, irradiation fluence and stopping power, has been investigated. Above a certain electronic stopping power threshold (∼2.5 keV/nm), every ion impact creates an axial region around the trajectory with a fixed refractive index (around n = 1.475) corresponding to a certain structural phase that is independent of stopping power. The results have been compared with previous data measured by means of infrared spectroscopy and small-angle X-ray scattering; possible mechanisms and theoretical models are discussed.
Resumo:
A novel slow push asteroid deflection strategy has been recently proposed in which an Earth threatening asteroid can be deflected by exploiting the momentum transmitted by a collimated beam of quasi-neutral plasma impinging against the asteroid surface. The beam can be generated with state-of-the art ion engines from a hovering spacecraft with no need for physical attachment or gravitational interaction with the celestial body. The spacecraft, placed at a distance of a few asteroid diameters, would need an ion thruster pointed at the asteroid surface as well as a second propulsion system to compensate for the ion engine reaction and keep the distance between the asteroid and the shepherd satellite constant throughout the deflection phase. A comparison in terms of required spacecraft mass per total imparted deflection impulse shows that the method outperforms the gravity tractor concept by more than one order of magnitude for asteroids up to about 200 m diameter. The two methods would yield comparable performance for asteroids larger than about 2 km