4 resultados para iodine
em Universidad Politécnica de Madrid
Resumo:
En esta contribución se presenta un estudio teórico de diferentes reacciones químicas entre óxidos de iodo y agua que pueden contribuir a la formación de partículas en la atmósfera. Mediante el uso de cálculos quimicocuánticos ab initio con tratamiento de la correlación electrónica se han obtenido propiedades termodinámicas para caracterizar esas reacciones
Resumo:
Biotic and abiotic emissions of molecular iodine and iodocarbons from the sea or the ice surface and the intertidal zone to the coastal/polar marine boundary layer lead to the formation of iodine oxides, which subsequently nucleate forming iodine oxide particles (IOPs). Although the link between coastal iodine emissions and ultrafine aerosol bursts is well established, the details of the nucleation mechanism have not yet been elucidated. In this paper, results of a theoretical study of a range of potentially relevant aggregation reactions of different iodine oxides, as well as complexation with water molecules, are reported. Thermochemical properties of these reactions are obtained from high level ab initio correlated calculations including spin–orbit corrections. The results show that the nucleation path most likely proceeds through dimerisation of I2O4. It is also shown that water can hinder gas-to-particle conversion to some extent, although complexation with key iodine oxides does not remove enough of these to stop IOP formation. A consistent picture of this process emerges from the theoretical study presented here and the findings of a new laboratory study reported in the accompanying paper (Gomez Martin et al., 2013).
Resumo:
In this contribution, results of a theoretical study on different reactions that odine oxides, in the presence of water, can undergo to form iodine oxides particles in the atmosphere. Thermodynamic and kinetic properties of these reactions have been obtained at high level ab initio correlated calculations.
Resumo:
Our paper is a brief historical study of aqueous solutions of potassium iodide and iodine. It also analyzes why, in Biology and Medicine, these solutions are known as Lugol reactive. Moreover, we study their use for educational purposes to deepen in various topics such as redox reactions and the relationship between solubility and bond types.