2 resultados para invariance properties
em Universidad Politécnica de Madrid
Resumo:
Dentro de las técnicas de control de procesos no lineales, los controladores de estructura variable con modos deslizantes (VSC-SM en sus siglas en inglés) han demostrado ser una solución robusta, por lo cual han sido ampliamente estudiados en las cuatro últimas décadas. Desde los años ochenta se han presentado varios trabajos enfocados a especificar controladores VSC aplicados a sistemas de tiempo discreto (DVSC), siendo uno de los mayores intereses de análisis obtener las mismas prestaciones de robustez e invarianza de los controladores VSC-SM. El objetivo principal del trabajo de Tesis Doctoral consiste en estudiar, analizar y proponer unos esquemas de diseño de controladores DVSC en procesos multivariable tanto lineales como no lineales. De dicho estudio se propone una nueva filosofía de diseño de superficies deslizantes estables donde se han considerado aspectos hasta ahora no estudiados en el uso de DVSC-SM como son las limitaciones físicas de los actuadores y la dinámica deslizante no ideal. Lo más novedoso es 1) la propuesta de una nueva metodología de diseño de superficies deslizantes aplicadas a sistemas MIMO lineales y la extensión del mismo al caso de sistemas multivariables no lineales y 2) la definición de una nueva ley de alcance y de una ley de control robusta aplicada a sistemas MIMO, tanto lineales como no lineales, incluyendo un esquema de reducción de chattering. Finalmente, con el fin de ilustrar la eficiencia de los esquemas presentados, se incluyen ejemplos numéricos relacionados con el tema tratado en cada uno de los capítulos de la memoria. ABSTRACT Over the last four decades, variable structure controllers with sliding mode (VSC-SM) have been extensively studied, demonstrating to be a robust solution among robust nonlinear processes control techniques. Since the late 80s, several research works have been focused on the application of VSC controllers applied to discrete time or sampled data systems, which are known as DVSC-SM, where the most extensive source of analysis has been devoted to the robustness and invariance properties of VSC-SM controllers when applied to discrete systems. The main aim of this doctoral thesis work is to study, analyze and propose a design scheme of DVSC-SM controllers for lineal and nonlinear multivariable discrete time processes. For this purpose, a new design philosophy is proposed, where various design features have been considered that have not been analyzed in DVSC design approaches. Among them, the physical limitations and the nonideal dynamic sliding mode dynamics. The most innovative aspect is the inclusion of a new design methodology applied to lineal sliding surfaces MIMO systems and the extension to nonlinear multivariable systems, in addition to a new robust control law applied to lineal and nonlinear MIMO systems, including a chattering reduction scheme. Finally, to illustrate the efficiency of the proposed schemes, several numerical examples applied to lineal and nonlinear systems are included.
Resumo:
The movement of water through the landscape can be investigated at different scales. This study dealt with the interrelation between bedrock lithology and the geometry of the overlying drainage systems. Parameters of fractal analysis, such as fractal dimension and lacunarity, were used to measure and quantify this relationship. The interrelation between bedrock lithology and the geometry of the drainage systems has been widely studied in the last decades. The quantification of this linkage has not yet been clearly established. Several studies have selected river basins or regularly shaped areas as study units, assuming them to be lithologically homogeneous. This study considered irregular distributions of rock types, establishing areas of the soil map (1:25,000) with the same lithologic information as study units. The tectonic stability and the low climatic variability of the study region allowed effective investigation of the lithologic controls on the drainage networks developed on the plutonic rocks, the metamorphic rocks, and the sedimentary materials existing in the study area. To exclude the effect of multiple in- and outflows in the lithologically homogeneous units, we focused this study on the first-order streams of the drainage networks. The geometry of the hydrologic features was quantified through traditional metrics of fluvial geomorphology and scaling parameters of fractal analysis, such as the fractal dimension, the reference density, and the lacunarity. The results demonstrate the scale invariance of both the drainage networks and the set of first-order streams at the study scale and a relationship between scaling in the lithology and the drainage network.